

ZIGBEE/USB ADAPTER U1(-Q)
REFERENCE MANUAL

2 www.ubisys.de

1. OVERVIEW

Thank you for purchasing this ubisys ZigBee USB/Adapter.
You have decided for a high-quality product with first-rate support!

This reference manual provides operating and maintenance instructions, interface specifications,
command references and more. It is primarily intended for system integrators, not end-users.

If you have any questions or need additional support, please visit the support pages that best fit your
background:

If you are a consumer (private household) or installer, please visit the Smart Home support pages at
http://www.ubisys.de/en/smarthome/support.html for contact details.

As a commercial customer, please visit the Engineering support pages at
http://www.ubisys.de/en/engineering/support.html for contact details.

http://www.ubisys.de
http://www.ubisys.de/en/smarthome/support.html
http://www.ubisys.de/en/engineering/support.html

3 www.ubisys.de

2. CONTENTS

1. Overview 2

2. Contents 3

3. Features 5

4. Universal Serial Bus Protocol 6

 Anatomy of the Device 6

 Vendor and Product Identifiers 6

 Control Transfers 6

 Data Transfers 6

5. 7Bfx™ Application Programming Interface 7

 API Reference 9

5.1.1. Genuine ZigBee Adapter Status Codes 9

5.1.2. Initialization and Shutdown 10

5.1.3. Device Enumeration 12

5.1.4. Adapter Device Management 16

5.1.5. ZigBee Application Support Sublayer (APS) Interface 29

5.1.6. ZigBee Device Object (ZDO) Interface 41

5.1.7. Raw Packet Capture Interface 43

5.1.8. Utility Functions 50

 7Bfx™ for Linux 59

 7Bfx™ for Microsoft Windows 59

6. Installation 60

 Hardware Installation 60

 Software Installation 60

6.2.1. Linux udev Rules 60

7. Initial Device Start-up 61

8. Man-Machine Interface (MMI) 62

9. ZigBee Interface 63

 Application Endpoint #0 – ZigBee Device Object 65

 Application Endpoint #242 – ZigBee Green Power 66

9.2.1. Green Power Cluster (Client) 66

9.2.2. Green Power Cluster (Server) 67

10. Physical Dimensions 68

http://www.ubisys.de

4 www.ubisys.de

11. Ordering Information 69

12. General Terms & Conditions of Business 70

13. Declaration of Conformity 71

14. Revision History 72

15. Contact 73

http://www.ubisys.de

5 www.ubisys.de

3. FEATURES

- ZigBee 3.0 Certified Product
- Supports all ZigBee device roles: Coordinator & Trust Center, Router, Non-Sleeping End-Device,

Sleeping End-Device
- ZigBee Green Power Proxy with the ability to operate as ZigBee Green Power Combined Device, when

the controlling application provides ZigBee Green Power Sink functionality
- Uniform API across Windows, Linux and macOS based on either WinUSB or libusb
- Provides protocol independent raw capture capabilities (MAC promiscuous mode), facilitating the design

of sniffers, automated test equipment and similar solutions; can operate as a node on the ZigBee
network and change back and forth between ZigBee and sniffer mode1

- Reliable, unattended, maintenance-free 24/7 operation (same solution used on ubisys Gateway G1)
- Made in Germany using high-quality, enduring parts for many years of life expectancy
- USB 2.0 full-speed device
- On-board inverted-F antenna
- Power supply: 5V=, 50mA (bus-powered), low power dissipation: 0.3W
- ZigBee USB/Adapter U1: ARM7TDMI at 48MHz, 512KB Flash, 64KB RAM, Texas Instruments

CC2520, 5dBm transmit power, -98dBm receiver sensitivity, ubisys IEEE 802.15.4 MAC
- ZigBee USB/Adapter U1-Q: Cortex-M4 at 48MHz, 512KB Flash, 128KB SRAM, Qorvo GP712,

RFX2411, ?dBm transmit power, -?dBm receiver sensitivity, Qorvo IEEE 802.15.4 MAC
- ubisys ZigBee stack for best-in-class reliability and performance
- Supports all channels in the 2.4 GHz band, i.e. channels 11-26 as per IEEE 802.15.4:

Primary = { 11, 15, 20, 25 }; Secondary = { 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26 }
- Supports joining centralized and distributed security networks as router
- Supports forming simple centralized security networks as Coordinator and Trust Center
- Supports forming distributed security networks as router
- Three pre-configured Trust Center Link-Keys for joining:

o Global Default Trust Center Link-Key (“ZigBeeAlliance09”)
o ZigBee 3.0 Global Distributed Security Link-Key2
o Device-individual link-key derived from installation code – also printed as text and QR barcode

- Extended neighbour table with up to 78 entries for routers and end-devices -
more than three times the capacity required by the standard (25)

- Extended routing table with up to 96 entries for ad hoc and many-to-one routes -
nearly ten times the capacity required by the standard (10)

- Extended buffering for sleeping end-devices with up to 24 buffers -
24 times the capacity required by the standard (1)

- Extended APS duplicate rejection table with up to 64 slots -
64 times the capacity required by the standard (1)

- Extensive transmit and receive queues for optimum through-put and minimum packet drop rate
- Reliable and scalable network-wide broadcasts featuring passive acknowledgments
- Reliable packet forwarding with automatic network-level retries
- Very sophisticated routing algorithm for reliable ad hoc routing – avoids routing loops even in case of

concurrent route requests with overlapping source/destination
- Firmware upgradable via USB in the field
- Flame retardant housing (V-0); black, RAL 9005
- OEM and design-in version available upon request, e.g. for professional gateways (c.f. ubisys G1)

1 Since application firmware 1.70
2 Since application firmware 1.68. Prior, pre-certification key (D0:..:DF)

http://www.ubisys.de

6 www.ubisys.de

4. UNIVERSAL SERIAL BUS PROTOCOL

 Anatomy of the Device

The U1 runs a specifically designed, proprietary, vendor-specific USB protocol. In addition to the
control pipe (endpoint #0), which executes synchronous (blocking) request/response exchanges, there
are also two asynchronous (non-blocking) data pipes, one for outbound transfers (endpoint #1, from
host computer to U1), and another one for inbound transfers (endpoint #2, from U1 to host computer).
Additionally, endpoint #3 provides the ability to raise interrupt requests to the host3.

The protocol primitives facilitate implementation of a ZigBee Gateway Device (ZGD) according to the
ZigBee Network Gateway Device Specification [R0], on top of the USB protocol.

[R0] ZigBee Network Device Gateway Specification, Document No. 07-5468-35.

 Vendor and Product Identifiers

The Vendor ID (VID) for genuine ubisys products is 0x19A6.
The Product ID (PID) for U1(-Q) is 0x0004.

 Control Transfers

TBD

 Data Transfers

TBD

3 This feature is currently not used.

http://www.ubisys.de

7 www.ubisys.de

5. 7BFX™ APPLICATION PROGRAMMING INTERFACE

Any USB host application framework, which supports custom USB devices, can interface to the U1.
For Windows, Linux and macOS operating systems, ubisys provides the 7Bfx™ API, which greatly
simplifies integration of the U1 into applications and solutions. While 7Bfx™ is a native C++ framework
primarily designed for use within other C++ code, it can also be used from other programming
languages like C# or plain C with a thin interworking layer.

Developers need to be familiar with IEEE 802.15.4 and ZigBee documents, in particular the ZigBee
Gateway Device Specification, ZigBee Core Stack Specification, ZigBee Base Device Behavior
Specification, ZigBee Cluster Library Specification, ZigBee Green Power Specification and further
applicable device specifications, for example the ZigBee Home Automation Profile or ZigBee Lighting &
Occupancy Specification. Many of the status codes mentioned in this document are status codes
belonging to the IEEE 802.15.4 PHY, MAC, ZigBee NWK, APS, ZDO, ZCL or ZGD.

Important Notice:

Instead of interfacing directly with U1 using the 7Bfx™ API, which is presented in this document and
provides a relatively low-level marshalled interface to ZigBee APS and ZDO, you might prefer higher-
level interfaces to U1, which ubisys also provides.

Available options include the ubisys ZigBee Gateway Device Service (zgdd), which provides GRIP, a
standards-compliant binary TCP/IP protocol based on ASN.1 and allows sharing a single U1 amongst
different applications.

On top of zgdd, ubisys also offers the ubisys Smart Facility Service (facilityd), which completely relieves
developers from commissioning and configuring ZigBee devices and comes with C/C++ and Java
client SDKs. Adapters to IoTivity (www.github.com/ubisys/iotivity), Apple HomeKit, Amazon Alexa and
other high-level smart home and IoT frameworks are also available.

Additional companion services complete the offering. For example, the ubisys ZigBee Over-the-Air
Upgrade Service (otad) is a ready-to-use, fully-fledged firmware upgrade server. The ubisys ZigBee
Time Server (ztimed) disseminates time from an internal real-time clock or internet NTP server to
devices in the ZigBee network.

http://www.ubisys.de
http://www.github.com/ubisys/iotivity),

8 www.ubisys.de

Figure 1: Example of an Overall System Architecture for a ZigBee Gateway based on U1(-Q)

http://www.ubisys.de

9 www.ubisys.de

 API Reference

To use the 7Bfx API, #include "u7bfx.h" and link against the appropriate library for your target
platform. On Windows, this would be the import library for either x86 or x64 processors, in the debug
or release build. When using the Microsoft Visual C++ Compiler, there is no need to specifically link
against one of these libraries, as the right one is automatically referenced by including u7bfx.
Conversely, on Linux the 7Bfx API is provided in a static library for a range of processor architectures,
including ARMv5 and ARMv7 and needs to be passed to the linker.

In C++, all symbols are defined in the u7bfx namespace and all API routines use the __stdcall
calling convention and return a HRESULT value.

5.1.1. Genuine ZigBee Adapter Status Codes

Some of the APIs return genuine ZigBee Adapter status codes as listed below:

Name (Value) Description
SUCCESS (0) The operation completed successfully.
TIMEOUT (1) The operation failed because a required action did not complete within the

expected time frame
GENERAL_ERROR (2) A general error occurred.

PARAMETER_MISSING (3) The operation failed because a required parameter was missing.
PARAMETER_INVALID_VALUE (4) The operation failed because a supplied parameter had an invalid value.

NETWORK_NOT_READY (5) The operation failed because the network was not ready.
EMPTY (6)

NOT_ALLOWED (7) The adapter did not execute the operation because it was not allowed.
MEMORY_ERROR (8) The operation failed because of insufficient memory.
APS_FAILURE (9) The operation failed at the Application Support sublayer.

NETWORK_FAILURE (10) The operation failed at the Network layer.

For convenience, u7bfx.h defines following enumeration values:

enum { statusSuccess, statusTimeout, statusGeneralError,
 statusParameterMissing, statusParameterInvalidValue,
 statusNetworkNotReady, statusEmpty, statusNotAllowed, statusMemoryError,
 statusAPSFailure, statusNetworkFailure };

http://www.ubisys.de

10 www.ubisys.de

5.1.2. Initialization and Shutdown

Before using any other function, you have to call Initialize(), which will return an instance handle
upon success. When initialization succeeded and you terminate the application, you should always call
Shutdown() and pass it the handle previously returned by Initialize().

5.1.2.1. Initialize() – Initialize library

Declaration
HRESULT STDAPICALLTYPE Initialize(HANDLE &hInstance);

Synopsis
Initializes the 7Bfx library for use.

Arguments
Argument Type (Direction) Description

hInstance HANDLE (out) Reference to an instance handle variable, which receives the
instance handle of the 7Bfx instance for this application, if the
function succeeded.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
For example, this could be a typical application start-up sequence:

 HANDLE hInstance, hDeviceList;

 if (!AfxWinInit(GetModuleHandle(0), 0, GetCommandLine(), 0))

{
 std::cerr << "MFC initialization failed." << std::endl;
 return 1;
 }

 ENSURE(SUCCEEDED(u7bfx::Initialize(hInstance)));

http://www.ubisys.de

11 www.ubisys.de

5.1.2.2. Shutdown() – Shutdown library

Declaration
HRESULT STDAPICALLTYPE Shutdown(const HANDLE hInstance);

Synopsis
Performs a graceful shutdown of the 7Bfx library after use. Performs clean-up and returns resources to
the operating system.

Arguments
Argument Type (Direction) Description

hInstance HANDLE (in) The instance handle as returned by a prior call to Initialize().

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Similar to the start-up sequence, the shutdown sequence should look like this:

 VERIFY(SUCCEEDED(u7bfx::Shutdown(hInstance)));

http://www.ubisys.de

12 www.ubisys.de

5.1.3. Device Enumeration

5.1.3.1. GetDeviceList()– List all attached U1 adapters

Declaration
HRESULT STDAPICALLTYPE GetDeviceList(HANDLE &hDeviceList);

Synopsis
Creates a list of U1 adapters currently attached to the system. You can pass the returned handle to
functions like GetDeviceSerialNumber() and OpenDevice(), for example.

Note: Always call DestroyDeviceList() for the returned handle after use.

Arguments
Argument Type (Direction) Description

hDeviceList HANDLE (out) Reference to a device list handle, which can be used to fetch
information about devices, connect to devices, etc.

Return Value
A HRESULT conveying the success/failure of the operation and other information, like error codes in
case of a failure and the number of devices in the list in case of success. You should use the macros
SUCCEEDED() and FAILED() to evaluate the return value and in case of success
HRESULT_CODE() to determine the number of devices returned in the list.

Example
A typical enumeration sequence would look like this:

 // Obtain a list of all ubisys ZigBee/USB adapters attached to the system
 const HRESULT hResult = u7bfx::GetDeviceList(hDeviceList);

 // If the call succeeded, the number of devices is available in the result
 // code and we can iterate over individual devices in the list...
 if (SUCCEEDED(hResult))
 {
 std::cout << "Enumeration succeeded. " << HRESULT_CODE(hResult) <<
 " devices found:" << std::endl;

 for (int nDevice = 0; nDevice < HRESULT_CODE(hResult); nDevice++)
 {
 // Do something with the device
 ...
 }
 }

 // Done with the list, release it
 u7bfx::DestroyDeviceList(hDeviceList);

http://www.ubisys.de

13 www.ubisys.de

5.1.3.2. DestroyDeviceList()– Release device list

Declaration
HRESULT STDAPICALLTYPE DestroyDeviceList(const HANDLE hDeviceList);

Synopsis
Releases the resources required to keep the list of U1 adapters currently attached to the system.

Arguments
Argument Type (Direction) Description

hDeviceList HANDLE (in) A device list handle previously returned by a successful call to
GetDeviceList().

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Refer to the example for GetDeviceList(), in section 5.1.3.1.

http://www.ubisys.de

14 www.ubisys.de

5.1.3.3. GetDevicePath()– Obtain device driver instance path

Declaration
HRESULT STDAPICALLTYPE GetDevicePath(const HANDLE hDeviceList,
 const unsigned int nDeviceIndex, const LPTSTR pszDeviceName,
 const unsigned int cbDeviceName);

Synopsis
Returns a device driver instance path on operating systems, which support and require such
information to instantiate a device driver for a specific adapter connected to the system. The device
need not be open to query its fully qualified path.

Arguments
Argument Type (Direction) Description

hDeviceList HANDLE (in) A device list handle previously returned by a successful call to
GetDeviceList().

nDeviceIndex unsigned int (in) Index to a specific device within the list of devices, starting at zero,
for which the device path is requested

pszDeviceName LPTSTR (in for location, out for
data stored at this location)

Pointer to a string buffer, which receives the device path. The
buffer must have at least cbDeviceName bytes of storage
capacity.

cbDeviceName unsigned int (in) Size of the output string buffer, in bytes, for the device path.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. This is an optional feature and platforms that do
not support it might return E_NOTIMPL.

Example
Below example, when executed on a Windows Platform, would return a resulting fully qualified device
path like \\?\usb#vid_19a6&pid_0004#0000002568#{9651f68a-847b-4bb0-9c92-
2d2bc71dc876}. Notice you should not require this function to succeed on platforms that do not
support it.

 TCHAR szPath[MAX_PATH + 1];

 // Determine the fully qualified device path, if available
 if (FAILED(GetDevicePath(hDeviceList, nIndex, szPath, sizeof(szPath))))
 return E_FAIL;

http://www.ubisys.de

15 www.ubisys.de

5.1.3.4. GetDeviceSerialNumber()– Obtain an adapter’s USB serial number

Declaration
HRESULT STDAPICALLTYPE GetDeviceSerialNumber(const HANDLE hDeviceList,
 const unsigned int nDeviceIndex, const LPTSTR pszSerialNumber,
 const unsigned int cbSerialNumber);

Synopsis
Returns the serial number of an attached adapter, in the format VVVV-PPPP-SSSSSSSSSS, where
VVVV is the four-digit ASCII hexadecimal representation of the USB Vendor ID (19A6 = ubisys
technologies GmbH), PPPP is the four-digit ASCII hexadecimal representation of the USB Product ID
(0004 = ubisys ZigBee/USB Adapter U14). The device need not be open to query its serial number.

Arguments
Argument Type (Direction) Description

hDeviceList HANDLE (in) A device list handle previously returned by a successful call to
GetDeviceList().

nDeviceIndex unsigned int (in) Index to a specific device within the list of devices, starting at zero,
for which the serial number is requested

pszSerialNumber LPTSTR (in for location, out for
data stored at this location)

Pointer to a string buffer, which receives the serial number. The
buffer must have at least cbDeviceName bytes of storage
capacity. A buffer of 21 bytes (including zero-termination
character) is sufficient to store the resulting string.

cbDeviceName unsigned int (in) Size of the output string buffer, in bytes, for the serial number.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. This is an optional feature and platforms that do
not support it might return E_NOTIMPL.

Example
Below example would return a resulting string like 19a6-0004-0000002568. If the application is
showing serial numbers in a user interface, it should only display the trailing part. For consistency
across different applications, the following convention should be used to format the serial number for
display: S/N: 0000002568. This is how the device appears in the ubisys Network Manager software,
for example.

 TCHAR szSerial[21];

 // Obtain the serial number string of the first attached adapter
 if (FAILED(GetDeviceSerialNumber(hDeviceList, 0, szSerial, sizeof(szSerial))))
 return E_FAIL;

4 Notice the product ID would be the same for fully compatible devices implementing the same native USB
protocol detailed in chapter 4, including the ubisys U1-Q, and the ubisys ZigBee Development Boards ZDB
AT91SAM7S512+CC2520, ZDB ATSAM4S+CC2520, ZDB ATSAM4S+GP712, etc.

http://www.ubisys.de

16 www.ubisys.de

5.1.4. Adapter Device Management

5.1.4.1. OpenDevice()– Prepare an adapter for actual use

Declaration
HRESULT STDAPICALLTYPE OpenDevice(const HANDLE hDeviceList,
 const unsigned int nIndex, HANDLE &hDevice);

Synopsis
Prepares exclusive access to an adapter, such that the application can use it for subsequent data
transmissions in the ZigBee network or for capturing raw MAC frames. The function fails if the device is
already open, regardless whether another application or the same application opened the device
before. Always call CloseDevice() for each handle returned by a successful call to
OpenDevice().

Arguments
Argument Type (Direction) Description

hDeviceList HANDLE (in) A device list handle previously returned by a successful call to
GetDeviceList().

nDeviceIndex unsigned int (in) Index to a specific device within the list of devices, starting at zero,
for which the serial number is requested

hDevice HANDLE (out) Reference to a device list handle, which can be used to fetch
information about devices, connect to devices, etc.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. If the device was already open or the operation
fails due to unavailable resources or the device having been removed from the system in the meantime,
this function returns E_FAIL. Other error codes include E_HANDLE indicating the supplied device list
was invalid, and E_INVALIDARG indicating the device index was out of bounds.

Example
Below example attempts to open the device with index nDevice in the device list.

 // Open the device
 if (FAILED(u7bfx::OpenDevice(hDeviceList, nDevice, hDevice)))
 throw std::runtime_error("failed to open adapter");

 // Use the device here
 ...

 // Close the device
 CloseDevice(hDevice);

http://www.ubisys.de

17 www.ubisys.de

5.1.4.2. CloseDevice()– Release device after use

Declaration
HRESULT STDAPICALLTYPE CloseDevice(const HANDLE hDevice);

Synopsis
Closes the connection to a specific U1 adapter when it is no longer required.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Refer to the example for OpenDevice(), in section 5.1.4.

http://www.ubisys.de

18 www.ubisys.de

5.1.4.3. RevertToFactoryFreshSettings()– Restore factory configuration

Declaration
HRESULT STDAPICALLTYPE RevertToFactoryFreshSettings(const HANDLE hDevice,
 const bool bFull = false);

Synopsis
Reverts the persistent storage in non-volatile memory to its factory-fresh state. A full factory reset
results in exactly the same state as delivered from the factory, whereas a typical factory reset allows
retaining some settings, in particular the ZigBee network layer outgoing security frame counter.
Arguments

Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
bFull bool (in) Set to true for a full factory reset, false to preserve

certain recommended settings, in particular
security frame counters. Default is false.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

19 www.ubisys.de

5.1.4.4. SetExtraInfo()– Associate additional information with a device

Declaration
HRESULT STDAPICALLTYPE SetExtraInfo(const HANDLE hDevice, void *pExtraInfo);

Synopsis
Provides a way to associate a device instance handle with an application defined object, for example a
device manager instance. This is a convenient way utility to facilitate instance pointer look-ups, for
example when the application implements a C++ object for each managed ZigBee adapter device and
the application needs to determine the object pointer given the handle. The stored pointer can be
obtained via subsequent calls to GetExtraInfo().

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
pExtraInfo void * (in) An arbitrary, application-defined pointer or pointer-sized integer via

cast to uint_ptr_t or int_ptr_t to be associated with a device
instance handle.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Below example associates a C++ object using its implicit this pointer with a device handle.

 // Associate the device handle with a pointer to this manager object
 ENSURE(SUCCEEDED(u7bfx::SetExtraInfo(m_hDevice, this)));

http://www.ubisys.de

20 www.ubisys.de

5.1.4.5. GetExtraInfo()– Associate additional information with a device handle

Declaration
HRESULT STDAPICALLTYPE GetExtraInfo(const HANDLE hDevice, void *&pExtraInfo);

Synopsis
Obtains the application-defined information previously stored with SetExtraInfo(). When the
request succeeds, the supplied storage will be set to the value previously provided by the application.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
pExtraInfo void *& (in for location, out

for data stored at this location)
Reference to a pointer or pointer-sized integer, which shall receive
the extra information previously associated with this device handle
using a call to SetExtraInfo().

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Below example obtains a C++ object given a device handle and uses this object to perform an action.

 CMyDeviceManager *pDevice;

 // Obtain the object associated with this device instance
 ENSURE(SUCCEEDED(u7bfx::GetExtraInfo(hDevice,
 reinterpret_cast<void *&>(pDevice))));

 // Sanity check: We expect this object to live on the heap
 ASSERT(AfxIsMemoryBlock(pDevice, sizeof(CMyDeviceManager)));

 // Sanity check: As we are casting from a void pointer,
 // make sure the type matches
 ASSERT(dynamic_cast< CMyDeviceManager *>(pDevice));

 // Now do something with the manager object...
 static_cast<CMyClass *>(pMyObject)->DoSomething();

http://www.ubisys.de

21 www.ubisys.de

5.1.4.6. GetVersions()– Obtain Application, Stack and Hardware Versions

Declaration
HRESULT STDAPICALLTYPE GetVersions(const HANDLE hDevice,
 unsigned int &dwFirmwareVersion, unsigned char &bStackVersion,
 unsigned char &bHardwareVersion);

Synopsis
Obtains the version numbers of ZigBee/USB adapter application firmware, Compact7B™ ZigBee
Stack release and the underlying hardware platform.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
dwFirmwareVersion unsigned int & (out) Reference to a 32-bit unsigned integer, which receives the

firmware version. This version follows the OTA Upgrade cluster
scheme, i.e. is organized as AAaaSSss, where:

- AA (MSB) is the major application version
- aa is the minor application version
- SS is the major Compact7B™ ZigBee stack version
- ss (LSB) is the minor Compact7B™ ZigBee stack version

For example, firmware application version 1.70 embedding
Compact7B™ ZigBee stack release version 1.86 is encoded as
0x01460156.

bStackVersion unsigned char & (out) Reference to an 8-bit unsigned integer, which receives the
ZigBee specification version. This value is always 0 for existing
devices.

bHardwareVersion unsigned char & (out) Reference to an 8-bit unsigned integer, which receives the
hardware version, which is essentially the platform type and may
include specific hardware revision information in the future:
0 – AT91SAM7S256 + CC2420
1 – ubisys U1, AT91SAM7S512 + CC2520
2 – ubisys U1-M, ATSAM4S8B + CC2520
3 – ZigBee Adapter provided by an embedded ZigBee Stack5
4 – ubisys U1-Q, ATSAM4S8B + GP712 + RFX2411

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
ENSURE (SUCCEEDED(u7bfx::GetVersions(hDevice, dwFirmwareVersion,
 bStackVersion, bHardwareVersion)));

std::wcout << L"firmware version: " << (dwFirmwareVersion >> 24)
 << L'.' << std::setw(2) << std::setfill(L'0')
 << ((dwFirmwareVersion >> 16) & 0xff) << L", stack release: " << std::setw(0)
 << ((dwFirmwareVersion >> 8) & 0xff) << L'.' << std::setw(2) << std::setfill(L'0')
 << (dwFirmwareVersion & 0xff)
 << L", stack version: "
 << bStackVersion << L", hardware version: " << bHardwareVersion
 << std::endl;

5 This is a virtual adapter, which exists in applications incorporating an embedded Compact7B™ ZigBee stack.
There is no further information about the underlying hardware. Examples are the ubisys ZigBee Gateway Service
(zgdd) on a Rapsberry Pi with Qorvo GP711 or GP712 radio, with or without additional radio front-end module.

http://www.ubisys.de

22 www.ubisys.de

5.1.4.7. GetExtendedAddress()– Obtain Adapter’s IEEE EUI-64

Declaration
HRESULT STDAPICALLTYPE GetExtendedAddress(const HANDLE hDevice,
 unsigned long long &qwExtendedAddress);

Synopsis
Returns the adapter’s 64-bit IEEE 802.15.4 MAC hardware address, also referred to as MACID or
EUI-64. This address is a fixed, universally unique identifier permanently stored in the adapter and
typically printed on the housing.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
qwExtendedAddress unsigned long long &

(out)
Reference to a 64-bit unsigned integer, which receives the
adapter’s IEEE 802.15.4.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
ENSURE(SUCCEEDED(u7bfx::GetExtendedAddress(hDevice, qwExtendedAddress)));

std::wcout << L"IEEE extended address: " << std::hex << std::setw(16)
 << std::setfill(L'0') << qwExtendedAddress << std::endl;

http://www.ubisys.de

23 www.ubisys.de

5.1.4.8. GetNetworkParameters()– Obtain ZigBee Network Settings

Declaration
HRESULT STDAPICALLTYPE GetNetworkParameters(const HANDLE hDevice,
 unsigned long long &qwExtendedPANID, unsigned short &wPANID,
 unsigned short &wShortAddress, unsigned char &nChannel,
 bool &bAssociationPermit);

Synopsis
Returns the adapter’s ZigBee network settings, for example the full 64-bit network identifier (extended
PAN-ID), the 16-bit short network identifier used for addressing at the MAC level, the devices short
address and operating channel. Some data is not valid before the device has started network
operations. For example, a short address of 0xFFFF indicates that the device

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
qwExtendedPANID unsigned long long &

(out)
Reference to a 64-bit unsigned integer, which receives the
extended PAN-ID of the ZigBee network as advertised in the
beacon payload, for example. If this value is null, the adapter
does currently not belong to any network

wPANID unsigned short & (out) Reference to a 16-bit unsigned integer, which receives the
short PAN-ID of the ZigBee network, which is used for
addressing at the MAC level

wShortAddress unsigned short & (out) Reference to a 16-bit unsigned integer, which receives the
network short address of the adapter on the ZigBee network. If
this address is equal to 0xFFFF, the adapter is currently not
operating on a network, i.e. it was not started yet.

nChannel unsigned char & (out) Reference to an 8-bit unsigned integer, which receives the
current operating channel of the ZigBee adapter.

bAssociationPermit bool & (out) Reference to a Boolean, which receives the current permit
joining (MAC association permit) state.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
ENSURE(SUCCEEDED(u7bfx::GetNetworkParameters(hDevice, qwExtendedPANID,
 wPANID, wShortAddress, nChannel, bAssociationPermit)));

std::wcout << L"Extended PANID: " << std::hex << std::setw(16)
 << std::setfill(L'0') << qwExtendedPANID << std::endl;

std::wcout << L"Channel: #" << std::dec << nChannel;

std::wcout << L", PANID: " << std::hex << std::setw(4) << std::setfill(L'0') << wPANID;

std::wcout << L", network address: " << std::hex << std::setw(4)
 << std::setfill(L'0') << wShortAddress << std::endl;

http://www.ubisys.de

24 www.ubisys.de

5.1.4.9. SetDesignatedRole()– Configure the ZigBee Device Role

Declaration
HRESULT STDAPICALLTYPE SetDesignatedRole(const HANDLE hDevice,
 const unsigned int nDeviceRole,
 const unsigned long long qwExtendedPANID = 0ull,
 const unsigned short wPANID = 0xffff,
 const unsigned short wShortAddress = 0xffff,
 const unsigned long dwChannelMask = 0x07fff800,
 const unsigned long long qwTrustCenterAddress = 0ull,
 const unsigned char bStartupControl = -1);

Synopsis
The ZigBee/USB adapter can operate in different device roles, in particular as (a) ZigBee Coordinator
and Trust Center, (b) ZigBee Router, or (c) ZigBee End-Device6. Depending on device role and the
start-up control parameter, some values of the ZigBee start-up attribute set (SAS) can be specified by
the application. For example, the EPID to use when forming a network or joining a specific network,
rejoining as a specific device etc.
Arguments

Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
nDeviceRole unsigned int (in) Any of the following device roles:

0x00 – ZigBee Coordinator & Trust Center
0x01 – ZigBee Router
0x02 – ZigBee End-Device, non-sleeping
0x82 – ZigBee End-Device, sleeping

qwExtendedPANID unsigned long long (in) The 64-bit EPID of the network to join or form. If 0,
the stack will use the adapter’s 64-bit IEEE
extended address as EPID. Applications may also
provide a random value to create new networks
with each new formation request.

wPANID unsigned short (in) 16-bit PAN-ID of the network to join or form.
wShortAddress unsigned short (in) 16-bit network short address on the network
dwChannelMask unsigned int (in) 32-bit channel mask according to IEEE 802.15.4.

Each bit corresponds to the according channel in
the 2.4 GHz band, e.g. 0x00000800 = channel
#11 … 0x04000000 = channel #26. For all 16
channels use 0x07FFF800

qwTrustCenterAddress unsigned long long (in) IEEE extended address of the Trust Center. Set to
0 to form a centralized network, set to
0xFFFFFFFFFFFFFFFF to form a distributed
security network (ZigBee 3.0 and ZigBee Light
Link only)

bStartupControl unsigned char (in) Controls start-up behaviour:
0 – Resume operation
1 – Form network
2 – Re-join network
3 – Join network

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

6 Operation as sleeping and non-sleeping ZigBee End-Device is primarily for debugging purposes. Customer
applications should operate the adapter either as ZigBee Coordinator and Trust Center or as ZigBee Router.

http://www.ubisys.de

25 www.ubisys.de

5.1.4.10. Startup()– Start the ZigBee Stack

Declaration
HRESULT STDAPICALLTYPE Startup(const HANDLE hDevice, const unsigned char nFlags,
 unsigned char &nStatus);

Synopsis
The controlling host application must explicitly start the Compact7B™ ZigBee stack embedded into the
ZigBee/USB adapter by invoking this function. The stack provides fine-grained control over how the
ZigBee stack starts and which actions it is allowed to perform:

1) Resume network operation (also called silent rejoin)
2) Perform a secure network rejoin
3) Perform a Trust Center rejoin (formerly known as “insecure” rejoin)
4) Associate from scratch
5) Form a new network

Instead of specifying allowed actions with this level of detail, the application can always use the default
value of “0”, which results in the ZigBee adapter deriving the allowed actions from the current settings
in the ZigBee Start-up Attribute Set (SAS).

The stack will attempt all allowed actions in the order listed above, i.e. first it will try to resume; if that
fails, it will try a secure re-join; if that fails, it will attempt a Trust Center re-join; if that fails, it will try to
associate to a new network from scratch; if that fails, it will try to form a new network.

When not using the default value, these operations must match with the start-up mode specified in the
SAS, as configured with SetDesignatedRole() or preconfigured at the factory. The factory-fresh
role for U1 is ZigBee Coordinator and Trust Center, and the initial start-up control value “1” instructs
the stack to form a new network. Once successful, a start-up control value of “0” reflects the fact that
the device is in a commissioned state and shall not form a network on subsequent invocations of the
start-up procedure.

If a network start-up is already in progress, the call will return with a status code of
NWK:INVALID_REQUEST. Otherwise, the immediate status will be SUCCESS (0), and the framework
notifies the application via its start-up completion handler about the result of the start request.

Arguments

Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
nFlags unsigned char (in) Either zero, to let the stack automatically determine the appropriate set

of actions, or a combination of the following bit flags in descending
priority:
Bit #0 – Allow resume
Bit #1 – Allow secure rejoin
Bit #2 – Allow trust center rejoin
Bit #3 – Allow association
Bit #4 – Allow network formation

nStatus unsigned char & (out) An immediate status code for the attempt to start the network.

http://www.ubisys.de

26 www.ubisys.de

For convenience, u7bfx.h defines following enumeration values for use as start-up flags:

enum { startupAllowResume = 0x01, startupAllowSecureRejoin = 0x02,
 startupAllowTrustCenterRejoin = 0x04, startupAllowAssociation = 0x08,
 startupAllowNetworkFormation = 0x10, startupDefault = 0,
 startupAllowJoining = startupAllowResume | startupAllowSecureRejoin |
 startupAllowTrustCenterRejoin | startupAllowAssociation,
 startupAllowRejoining = startupAllowSecureRejoin |
 startupAllowTrustCenterRejoin, startupModes = 0x1f };

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

27 www.ubisys.de

5.1.4.11. SetOnNotifyStartupComplete()– Install Start-up Completion Handler

Declaration
HRESULT STDAPICALLTYPE SetOnNotifyStartupComplete(const HANDLE hDevice,
 const ONNOTIFYSTARTUPCOMPLETEHANDLER pfnOnNotifyStartupComplete);

Synopsis
Installs a completion handler for the start-up procedure of the ZigBee networking stack. If Startup()
succeeded (as determined by, both, the HRESULT return value and the nStatus code), the framework
will call this user-defined handler when the start-up procedure actually completed and the ZigBee
adapter is ready to be used for sending and receiving ZigBee traffic.

CAUTION: This callback is potentially invoked from another thread than the thread originally invoking
Startup(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnNotifyStartupComplete ONNOTIFYSTARTUPCOMPLETEHANDLER

(in)
Pointer to an application-defined
callback, which the framework invokes
when it has the completed ZigBee
networking stack start-up sequence.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONNOTIFYSTARTUPCOMPLETEHANDLER)
 (const HANDLE hDevice, unsigned char bStatus);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
bStatus unsigned char (in) Result of the network start-up request, e.g.

SUCCESS, STARTUP_FAILURE, etc.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

28 www.ubisys.de

5.1.4.12. SetCurrentChannel()– Set the Current Channel

Declaration
HRESULT STDAPICALLTYPE SetCurrentChannel(const HANDLE hDevice,
 const unsigned char nChannel, unsigned char &nStatus);

Synopsis
Changes the current channel. This is only intended for Stub APS messaging, where the ZigBee/USB
adapter is required to temporarily change channels, for example to perform a touch-link scan. After
changing channels, always revert to the original ZigBee network channel7.

The following IEEE 802.15.4 PHY status codes are available for convenience:
namespace phy
{
 enum { statusTransceiverOff = 8, statusReceiverEnabled = 6,
 statusTransmitterEnabled = 9, statusTransmitting = 2,
 statusReceiving = 1, statusSuccess = 7, statusChannelBusy = 0,
 statusChannelIdle = 4 };
}

Important Notice: Contrary to the usual habit of zero meaning SUCCESS, the IEEE 802.15.4 PHY
defines SUCCESS as 7. For this API, this does only apply to SetCurrentChannel(). Do not confuse
with SUCCESS (0) in other parts of this documentation and your code!

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
nChannel unsigned char (in) Number of the channel to change to.
nStatus unsigned char & (out) Reference to an 8-bit unsigned integer, which

receives the IEEE 802.15.4 PHY status code for
the channel change request.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

7 This information is available via GetNetworkParameters().

http://www.ubisys.de

29 www.ubisys.de

5.1.5. ZigBee Application Support Sublayer (APS) Interface

5.1.5.1. ConfigureEndpoint()– Allocate/Configure a ZigBee Endpoint

Declaration
HRESULT STDAPICALLTYPE ConfigureEndpoint(const HANDLE hDevice,
 const void *const pSimpleDescriptor, const size_t cbSimpleDescriptor,
 unsigned char &nStatus);

Synopsis
Allocates and configures a ZigBee endpoint on the adapter, such that the application can use it for
sending and receiving ZigBee APS traffic.

Notice endpoint #0 is reserved for the ZDO, and endpoint #255 is reserved as the “broadcast to all
endpoints” address. Specifying these endpoints in the simple descriptor will result in a
PARAMETER_INVALID_VALUE status.

Trying to configure an endpoint, which is occupied by the adapter firmware, will result in a
NOT_ALLOWED status.

The special endpoint #242 pertains to the ZigBee Green Power feature. By default, the adapter
provides a Green Power Proxy on this endpoint, which a host application can promote to a Green
Power Combined device, when it provides suitable Green Power sink functionality.

Only if the status code is SUCCESS, the application may use this endpoint for APS data transfers.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
pSimpleDescriptor void * (in) Pointer to a simple descriptor, in ZigBee over-the-air format,

which the adapter shall apply to the endpoint.
cbSimpleDescriptor size_t (in) Size of the supplied simple descriptor, in bytes.

nStatus unsigned char & (out) Returns the status of the attempt to allocate or reconfigure an
endpoint.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

30 www.ubisys.de

5.1.5.2. ClearEndpoint()– Release a ZigBee Endpoint

Declaration
HRESULT STDAPICALLTYPE ClearEndpoint(const HANDLE hDevice,
 const unsigned char nEndpoint, unsigned char &nStatus);

Synopsis
Releases a previously allocated and configured ZigBee endpoint on the adapter. All inbound APS
traffic for this endpoint will seize. Trying to clear an endpoint, which is under control of the adapter
firmware, will result in a NOT_ALLOWED status.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a successful call to

OpenDevice().
nEndpoint unsigned char (in) Identifies the endpoint, which shall no longer be active.
nStatus unsigned char & (out) Returns the status of the attempt to release an endpoint.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

31 www.ubisys.de

5.1.5.3. RequestData()– Send APS Data Message

Declaration
HRESULT STDAPICALLTYPE RequestData(const HANDLE hDevice,
 const unsigned int dwRequestID,
 const unsigned char bDestinationAddressingMode,
 const unsigned short wDestinationAddress,
 const unsigned long long qwDestinationAddress,
 const unsigned char bDestinationEndpoint,
 const unsigned short wProfileID, const unsigned short wClusterID,
 const unsigned char bSourceEndpoint,
 const void *const pASDU, const unsigned short cbASDU,
 const unsigned char bTransmitOptions, const unsigned char bRadius,
 const unsigned char bEnhancedOptions);

Synopsis
Sends an APS datagram over the ZigBee network to a single device or a group of devices. A single
device can be addressed using its network short address and a destination endpoint address, or using
its IEEE extended address and destination endpoint address.

The source endpoint must have been configured via ConfigureEndpoint().

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) A 32-bit identifier provided by the caller, which the

framework will subsequently pass to the APS data
confirmation handler to refer to this APS
transaction.

bDestinationAddressingMode unsigned char (in) The destination addressing mode for this APS
datagram:
1 = group-cast (and group address in
wDestinationAddress),
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),
3 = unicast via IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

wDestinationAddress unsigned short (in) Network short address of the destination (in case
of a unicast) or group address of the destination (in
case of a group cast)

qwDestinationAddress unsigned long long (in) IEEE extended address of the destination (in case
of a unicast)

bDestinationEndpoint unsigned char (in) Application endpoint on the destination (in case of
a unicast).

wProfileID unsigned short (in) Application profile identifier, e.g. 0x0104 for
ZigBee Home Automation, ZigBee Light Link and
ZigBee 3.0

wClusterID unsigned short (in) Application cluster identifier, e.g. 0x0006 for the
standard on/off cluster

bSourceEndpoint unsigned char (in) Application endpoint to use as source address. An
application must exist on this endpoint and the
endpoint must have previously been initialized by
ConfigureEndpoint().

pASDU const void * (in) Pointer to APS payload of cbASDU bytes length.

http://www.ubisys.de

32 www.ubisys.de

cbASDU unsigned short (in) Size of the APS payload provided in the memory
location pointed to by pASDU.

bTransmitOptions unsigned char (in) APS transmit options. Please refer to APSDE-
DATA.request for details.

bRadius unsigned char (in) Hop limit (time to live) for the message. Set to zero
for the stack default value (currently 30), or specify
another, typically smaller, hop limit.

bEnhancedOptions unsigned char (in) Enhanced transmit options. For example, bit #6
(0x40) enables broadcast reflection, an ubisys-
specific APS feature that forwards a broadcast to
the device itself for local processing in addition to
sending the broadcast over-the-air. Refer to
Compact7B™ documentation for full details.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. In case of success, a confirmation handler will be
invoked after APS transmission has completed to convey the result of the APS data transmission.

http://www.ubisys.de

33 www.ubisys.de

5.1.5.4. SetOnConfirmData()– Install Confirmation Handler for Outbound APS Data

Declaration
HRESULT STDAPICALLTYPE SetOnConfirmData(const HANDLE hDevice,
 const ONCONFIRMDATAHANDLER pfnOnConfirmData);

Synopsis
Installs a data indication handler for outbound APS datagrams sent using RequestData() over one
of the endpoints the application has previously configured.

CAUTION: This callback is potentially invoked from another thread than the thread originally invoking
RequestData(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnConfirmData ONCONFIRMDATAHANDLER (in) Pointer to an application-defined callback, which

the framework invokes when it has completed
transmission of an APS datagram.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONCONFIRMDATAHANDLER)(const HANDLE hDevice,
 unsigned int dwRequestID, unsigned int dwTimestamp,
 unsigned char bStatus);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) The 32-bit request identifier originally supplied to

RequestData(), when the application queued
an APS data transmission request.

dwTimestamp unsigned long long (in) Time-stamp of the frame as reported by the IEEE
802.15.4 MAC layer.

bStatus unsigned char (in) If transmission was successful, this status code
equals SUCCESS (0); else, it conveys an APS,
NWK, or MAC status code identifying the reason
of the failure.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

34 www.ubisys.de

5.1.5.5. SetOnIndicateData()– Install Indication Handler for Inbound APS Data

Declaration
HRESULT STDAPICALLTYPE SetOnIndicateData(const HANDLE hDevice,
 const ONINDICATEDATAHANDLER pfnOnIndicateData);

Synopsis
Installs a data indication handler for inbound APS datagrams, which target one of the endpoints the
application has previously configured.

CAUTION: This callback is potentially invoked from another thread than the application’s main thread.
Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnIndicateData ONINDICATEDATAHANDLER

(in)
Pointer to an application-defined callback, which
the framework invokes when it receives an APS
datagram for the application.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONINDICATEDATAHANDLER)(const HANDLE hDevice,
 unsigned char bApplication, unsigned long long qwSourceAddress,
 unsigned short wSourceAddress, unsigned char bSourceEndpoint,
 unsigned char bSourceAddressingMode, unsigned short wDestinationAddress,
 unsigned char bDestinationEndpoint,
 unsigned char bDestinationAddressingMode, unsigned short wProfileID,
 unsigned short wClusterID, unsigned int dwTimestamp,
 unsigned char bLinkQuality, unsigned char bStatus,
 unsigned char bSecurityStatus, const void *const pASDU,
 const unsigned short cbASDU);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
bApplication unsigned char (in) The application endpoint this APS datagram is for.

For example, if the destination endpoint address is
the broadcast endpoint (255) or this was a
multicast, the framework provides multiple
indications of the same message for each
matching endpoint.

qwSourceAddress unsigned long long (in) IEEE extended address of the device originating
the APS data frame.

wSourceAddress unsigned short (in) Network short address of the device originating the
APS data frame.

bSourceEndpoint unsigned char (in) Application source endpoint on the device
originating the APS data frame.

http://www.ubisys.de

35 www.ubisys.de

bSourceAddressingMode unsigned char (in) Source addressing mode, either
2 = network short address (in
wDestinationAddress and
bDestinationEndpoint), or
3 = IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

wDestinationAddress unsigned short (in) Either a group or network short address, as
determined by
bDestinationAddressingMode.

bDestinationEndpoint unsigned char (in) Destination endpoint as specified in the APS
frame.

bDestinationAddressingMode unsigned char (in) Destination addressing mode, either
1 = group-cast (and group address in
wDestinationAddress), or
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),

wProfileID unsigned short (in) Application profile identifier, e.g. 0x0104 for
ZigBee Home Automation, ZigBee Light Link and
ZigBee 3.0

wClusterID unsigned short (in) Application cluster identifier, e.g. 0x0006 for the
standard on/off cluster

dwTimestamp unsigned int (in) Time-stamp of the frame as reported by the IEEE
802.15.4 MAC layer

bLinkQuality unsigned char (in) LQI of the frame as reported by the IEEE 802.15.4
MAC layer

bStatus unsigned char (in) This is currently always SUCCESS (0).
bSecurityUsed bool (in) True, if the frame was secured at the APS layer.

pASDU const void * (in) Pointer to a location in memory, which holds the
APS payload conveyed in the datagram, the size of
which is provided in cbASDU.

cbASDU unsigned short (in) Size of the APS payload at pASDU.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

36 www.ubisys.de

5.1.5.6. RequestDataStub()– Send Stub APS Data Message

Declaration
HRESULT STDAPICALLTYPE RequestDataStub(const HANDLE hDevice,
 const unsigned int dwRequestID,
 const unsigned char bDestinationAddressingMode,
 const unsigned short wDestinationPANID,
 const unsigned short wDestinationAddress,
 const unsigned long long qwDestinationAddress,
 const unsigned short wProfileID, const unsigned short wClusterID,
 const void *const pASDU, const unsigned short cbASDU);

Synopsis
Sends datagram over the ZigBee Stub APS, a thin layer on top of the IEEE 802.15.4 MAC, which
effectively bypasses the ZigBee networking stack. This feature is also known as inter-PAN messaging8
and is the basis for touch-link commissioning as defined by the ZigBee Light Link application profile.

You might want to temporarily change channels with SetCurrentChannel() prior to calling
RequestDataStub().

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) A 32-bit identifier provided by the caller, which the

framework will subsequently pass to the APS data
confirmation handler to refer to this APS
transaction.

bDestinationAddressingMode unsigned char (in) The destination addressing mode for this APS
datagram:
0 = group-cast or unicast to all matching targets
specified in the binding table,
1 = group-cast (and group address in
wDestinationAddress),
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),
3 = unicast via IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

wDestinationPANID unsigned short (in) Network identifier of the destination.
wDestinationAddress unsigned short (in) Network short address of the destination (in case

of a unicast) or group address of the destination (in
case of a group cast)

qwDestinationAddress unsigned long long (in) IEEE extended address of the destination (in case
of a unicast)

wProfileID unsigned short (in) Application profile identifier, e.g. 0xC05E for
ZigBee Light Link

wClusterID unsigned short (in) Application cluster identifier, e.g. 0x1000 for the
touch-link commissioning cluster

pASDU const void * (in) Pointer to APS payload of cbASDU bytes length.
cbASDU unsigned short (in) Size of the APS payload provided in the memory

location pointed to by pASDU.

8 The stub APS was originally designed for ZigBee Smart Energy to enable low-cost in-home price displays

http://www.ubisys.de

37 www.ubisys.de

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. In case of success, a confirmation handler will be
invoked after transmission has completed to convey the result of the APS stub data transmission.

http://www.ubisys.de

38 www.ubisys.de

5.1.5.7. SetOnConfirmDataStub()– Install Confirmation Handler Stub APS Data

Declaration
HRESULT STDAPICALLTYPE SetOnConfirmDataStub(const HANDLE hDevice,
 const ONCONFIRMDATASTUBHANDLER pfnOnConfirmData);

Synopsis
Installs a data indication handler for outbound APS datagrams sent using RequestData() over one
of the endpoints the application has previously configured.

CAUTION: This callback is potentially invoked from another thread than the thread originally invoking
RequestData(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnConfirmData ONCONFIRMDATASTUBHANDLER

(in)
Pointer to an application-defined callback, which
the framework invokes when it has completed
transmission of a Stub APS datagram.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONCONFIRMDATASTUBHANDLER)(const HANDLE hDevice,
 unsigned int dwRequestID, unsigned int dwTimestamp,
 unsigned char bStatus);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) The 32-bit request identifier originally supplied to

RequestDataStub(), when the application
queued a Stub APS data transmission request.

dwTimestamp unsigned long long (in) Time-stamp of the frame as reported by the IEEE
802.15.4 MAC layer.

bStatus unsigned char (in) If transmission was successful, this status code
equals SUCCESS (0); else, it conveys an APS,
NWK, or MAC status code identifying the reason
of the failure.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

39 www.ubisys.de

5.1.5.8. SetOnIndicateDataStub()– Install Indication Handler for Stub APS Data

Declaration
HRESULT STDAPICALLTYPE SetOnIndicateDataStub(const HANDLE hDevice,
 const ONINDICATEDATASTUBHANDLER pfnOnIndicateData);

Synopsis
Installs a data indication handler for inbound Stub APS datagrams.

CAUTION: This callback is potentially invoked from another thread than the application’s main thread.
Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnIndicateData ONINDICATEDATASTUBHANDLER

(in)
Pointer to an application-defined callback, which
the framework invokes when it receives a Stub
APS datagram for the application.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONINDICATEDATASTUBHANDLER)
 (const HANDLE hDevice, unsigned long long qwSourceAddress,
 unsigned short wSourceAddress, unsigned short wSourcePANID,
 unsigned char bSourceAddressingMode,
 unsigned long long qwDestinationAddress, unsigned short wDestinationAddress,
 unsigned short wDestinationPANID, unsigned char bDestinationAddressingMode,
 unsigned int dwTimestamp, unsigned char bLinkQuality,
 const unsigned short wProfileID, const unsigned short wClusterID,
 const void *const pASDU, const unsigned short cbASDU);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
qwSourceAddress unsigned long long (in) IEEE extended address of the device originating

the APS data frame.
wSourceAddress unsigned short (in) Network short address of the device originating the

APS data frame.
wSourcePANID unsigned short (in) Network identifier of the device originating the

Stub APS data frame.
bSourceAddressingMode unsigned char (in) Source addressing mode, either

2 = network short address (in
wDestinationAddress and
bDestinationEndpoint), or
3 = IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

qwDestinationAddress unsigned long long (in) IEEE extended address of the device targeted by
the Stub APS data frame.

wDestinationAddress unsigned short (in) Network short address of the device targeted by
the APS data frame.

wDestinationPANID unsigned short (in) Network identifier of the device targeted by the
Stub APS data frame.

http://www.ubisys.de

40 www.ubisys.de

bDestinationAddressingMode unsigned char (in) Source addressing mode, either
1 = group-cast (and group address in
wDestinationAddress),
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),

dwTimestamp unsigned int (in) Time-stamp of the frame as reported by the IEEE
802.15.4 MAC layer

bLinkQuality unsigned char (in) LQI of the frame as reported by the IEEE 802.15.4
MAC layer

wProfileID unsigned short (in) Application profile identifier, e.g. 0xC05E for
ZigBee Light Link

wClusterID unsigned short (in) Application cluster identifier, e.g. 0x1000 for the
touch-link commissioning cluster

pASDU const void * (in) Pointer to a location in memory, which holds the
Stub APS payload conveyed in the datagram, the
size of which is provided in cbASDU.

cbASDU unsigned short (in) Size of the Stub APS payload at pASDU.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

41 www.ubisys.de

5.1.6. ZigBee Device Object (ZDO) Interface

5.1.6.1. RequestDeviceTransaction()– Perform ZDO Transaction

Declaration
HRESULT STDAPICALLTYPE RequestDeviceTransaction(const HANDLE hDevice,
 const unsigned int dwRequestID,
 const unsigned char bDestinationAddressingMode,
 const unsigned short wDestinationAddress,
 const unsigned long long qwDestinationAddress,
 const unsigned short wClusterID, const void *const pTransactionData,
 const unsigned short cbTransactionData,
 const unsigned char bTransmitOptions, const unsigned char bRadius,
 const unsigned char bEnhancedOptions, const unsigned int dwTimeout);

Synopsis
Sends a ZDO datagram over the ZigBee network and optionally waits for a response.

Notice that the Compact7B™ stack embedded into the adapter’s firmware is also using the ZDO
internally, which is why the adapter maintains ZDP transaction sequence counters; the ZDO is a shared
resource. In addition, it will always perform necessary processing of incoming ZDO frames, like
device_annce and additionally notify the application where appropriate. The host application need not
(and cannot) implement any ZDO behaviour. This is contrary to the APS data service, where the
application has exclusive access and ownership.

The APS broadcast reflection feature is useful for permit joining operations, such that the adapter will
both permit joining locally and broadcast the permit joining frame to other routers in the network.

Currently, only the first response will be taken into account, should there be multiple responses to a
single request.

The ZDO uses stock endpoint #0 and profile ID 0x0000, ZigBee Device Profile (ZDP). There is no
need to configure an endpoint via ConfigureEndpoint() for executing ZDO transactions.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) A 32-bit identifier provided by the caller, which the

framework will subsequently pass to the APS data
confirmation handler to refer to this APS
transaction.

bDestinationAddressingMode unsigned char (in) The destination addressing mode for this APS
datagram:
1 = group-cast (and group address in
wDestinationAddress),
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),
3 = unicast via IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

http://www.ubisys.de

42 www.ubisys.de

wDestinationAddress unsigned short (in) Network short address of the destination (in case
of a unicast) or group address of the destination (in
case of a group cast)

qwDestinationAddress unsigned long long (in) IEEE extended address of the destination (in case
of a unicast)

wClusterID unsigned short (in) ZDP cluster identifier, e.g. 0x0036 for a
mgmt_permit_joining_req

pTransactionData const void * (in) Pointer to ZDO transaction data of
cbTransactionData bytes length. This is only
the transaction data part of a ZDP frame, without
the transaction sequence number.

cbTransactionData unsigned short (in) Size of the ZDO transaction data in the memory
location pointed to by pTransactionData.

bTransmitOptions unsigned char (in) APS transmit options. Please refer to APSDE-
DATA.request for details.

bRadius unsigned char (in) Hop limit (time to live) for the message. Set to zero
for the stack default value (currently 30), or specify
another, typically smaller, hop limit.

bEnhancedOptions unsigned char (in) Enhanced transmit options. For example, bit #6
(0x40) enables broadcast reflection, an ubisys-
specific APS feature that forwards a broadcast to
the device itself for local processing in addition to
sending the broadcast over-the-air. Refer to
Compact7B™ documentation for full details.

dwTimeout unsigned int (in) Specifies the time, in microseconds, to wait for a
response frame in order to complete the
transaction. A value of 0 means do not wait for a
response and should be used when the caller does
not expect a response frame, e.g. when
broadcasting a mgmt_permit_joining_req.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK. In case of success, a confirmation handler will be
invoked after APS transmission has completed to convey the result of the APS data transmission.

http://www.ubisys.de

43 www.ubisys.de

5.1.7. Raw Packet Capture Interface

The ZigBee/USB Adapter U1 has the ability to acquire raw MAC frames9. With this feature, application
developers can build protocol analysers, test and production line equipment using U1 for any IEEE
802.15.4 based protocol, including ZigBee, ZigBee Green Power, 6lowpan, Thread, WirelessHART
ISA 100.11a, and others.

Important Notice: This feature is not to be confused with the ubisys IEEE 802.15.4 USB Stick for
Wireshark, which is a different product that runs a different firmware (Network Adapter using the
RNDIS USB protocol) and does not provide any ZigBee functionality.

5.1.7.1. EnablePromiscuousMode()– Set the Current Channel

Declaration
HRESULT STDAPICALLTYPE EnablePromiscuousMode(const HANDLE hDevice,
 unsigned char &nStatus, const bool bEnable = true,
 const unsigned char nChannel = 11, const bool bAutoStartStop = true,
 const bool bForceStartStop = false);

Synopsis
Enters or leaves IEEE 802.15.4 MAC promiscuous mode. In promiscuous mode, the ZigBee/USB
adapter operates as a raw capture device (protocol sniffer), which acquires MAC frames and presents
them unmodified to the host application without further processing. The host application must install a
suitable handler via SetOnIndicatePromiscuousData(). It is possible to switch back and forth
between normal operating mode as a node on a ZigBee network and raw packet acquisition mode.

Important Notice: While in MAC promiscuous mode, the ZigBee/USB adapter U1 is off the ZigBee
network. It does not process incoming frames other than forwarding to the host application.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
nStatus unsigned char & (out) Reference to an 8-bit unsigned integer, which

receives the IEEE 802.15.4 MAC status code for
the mode change request.

bEnable bool (in) Enables or disables MAC promiscuous mode.
nChannel unsigned char (in) Number of the channel to start packet acquisition

on.
bAutoStartStop bool (in) Automatically start/stop the capture, based on

bEnable.
bForceStartStop bool (in) Force starting/stopping the capture.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

9 Since application firmware version 1.70

http://www.ubisys.de

44 www.ubisys.de

5.1.7.2. SetOnIndicatePromiscuousData()– Install Raw MAC Capture Handler

Declaration
HRESULT STDAPICALLTYPE SetOnIndicatePromiscuousData(const HANDLE hDevice,
 const ONINDICATEPROMISCUOUSDATAHANDLER pfnOnIndicatePromiscousData);

Synopsis
Installs a data indication handler for raw MAC frames.

CAUTION: This callback is potentially invoked from another thread than the application’s main thread.
Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned

by a successful call to
OpenDevice().

pfnOnIndicatePromiscousData ONINDICATEPROMISCUOUSDATAHANDLER
(in)

Pointer to an application-defined
callback, which the framework
invokes when it receives a MAC
frame.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT(STDAPICALLTYPE *ONINDICATEPROMISCUOUSDATAHANDLER)
 (const HANDLE hDevice, unsigned int dwTimestamp,
 unsigned char bChannel, unsigned char bLinkQuality,
 signed char bRSSI, unsigned char bCorrelation,
 const void *const pMPDU, const unsigned short cbMPDU);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwTimestamp unsigned int (in) Time-stamp of the frame as reported by the IEEE

802.15.4 MAC layer
bChannel unsigned char (in) Number of the IEEE 802.15.4 channel this frame

was acquired on
bLinkQuality unsigned char (in) LQI of the frame as reported by the IEEE 802.15.4

MAC layer
bRSSI signed char (in) Received signal strength indicator of the frame as

reported by the IEEE 802.15.4 radio
bCorrelation unsigned char (in) Raw receiver correlation value of the frame as

reported by the IEEE 802.15.4 radio
pMPDU const void * (in) Pointer to a location in memory, which holds the

MPDU, the size of which is provided in cbMPDU.
cbMPDU unsigned short (in) Size of the MPDU at pMPDU.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

45 www.ubisys.de

5.1.7.3. SetOnConfirmDeviceTransaction()– Install ZDO Completion Handler

Declaration
HRESULT STDAPICALLTYPE SetOnConfirmDeviceTransaction(const HANDLE hDevice,
 const ONCONFIRMDEVICETRANSACTIONHANDLER pfnOnConfirmDeviceTransaction);

Synopsis
Installs a completion handler for ZDO transactions issued via RequestDeviceTransaction(). The
framework will call this user-defined handler for each completed ZDO transaction to convey the results
of the transaction.

CAUTION: This callback is potentially invoked from another thread than the thread originally invoking
RequestDeviceTransaction(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously

returned by a successful call to
OpenDevice().

pfnOnConfirmDeviceTransaction ONCONFIRMDEVICETRANSACTIONHANDLER
(in)

Pointer to an application-defined
callback, which the framework
invokes when it has completed a
ZDO transaction.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONCONFIRMDEVICETRANSACTIONHANDLER)
 (const HANDLE hDevice, unsigned int dwRequestID, unsigned char bResult,
 unsigned long long qwSourceAddress, unsigned short wSourceAddress,
 unsigned char bSourceAddressingMode,
 unsigned short wDestinationAddress, unsigned short wClusterID,
 unsigned char bStatusTX, unsigned int dwTimestampTX,
 unsigned int dwTimestampRX, unsigned char bLinkQuality,
 unsigned char bStatusRX, bool bSecurityUsed,
 const void *const pResponse, const unsigned short cbResponse);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
dwRequestID unsigned int (in) The 32-bit request identifier originally supplied to

RequestData(), when the application queued
an APS data transmission request.

qwSourceAddress unsigned long long (in) IEEE extended address of the device originating
the APS data frame.

wSourceAddress unsigned short (in) Network short address of the device originating the
APS data frame.

bSourceAddressingMode unsigned char (in) Source addressing mode, either
2 = network short address (in
wDestinationAddress and
bDestinationEndpoint), or
3 = IEEE extended address (in
qwDestinationAddress and
bDestinationEndpoint).

http://www.ubisys.de

46 www.ubisys.de

wDestinationAddress unsigned short (in) Destination addressing mode, either
1 = group-cast (and group address in
wDestinationAddress),
2 = unicast via network short address (in
wDestinationAddress and
bDestinationEndpoint),

wClusterID unsigned short (in) Application cluster identifier, e.g. 0x0006 for the
standard on/off cluster

bStatusTX unsigned char (in) Status of the transmission attempt, any APS,
NWK, or MAC status code.

dwTimestampTX unsigned int (in) Time-stamp of the request frame as reported by
the IEEE 802.15.4 MAC layer

dwTimestampRX unsigned int (in) Time-stamp of the response frame as reported by
the IEEE 802.15.4 MAC layer

bLinkQuality unsigned char (in) LQI of the frame as reported by the IEEE 802.15.4
MAC layer

bStatusRX unsigned char (in) This is currently always SUCCESS (0).
bSecurityUsed bool (in) True, if the frame was secured at the APS layer.

pResponse const void * (in) Pointer to a location in memory, which holds the
ZDO response, the size of which is specified in
cbResponse.

cbResponse unsigned short (in) Size of the ZDO response at pResponse.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

47 www.ubisys.de

5.1.7.4. SetOnNotifyDeviceAnnouncement()– Install ZDO Announcement Handler

Declaration
HRESULT STDAPICALLTYPE SetOnNotifyDeviceAnnouncement(const HANDLE hDevice,
 const ONNOTIFYDEVICEANNOUNCEMENTHANDLER pfnOnNotifyDeviceAnnoucement);

Synopsis
Installs a notification handler for ZDO device announcements received from devices joining the network
for the first time or re-joining the network after temporarily losing network connectivity, potentially after
power-up, etc.

This is usually a good time to configure devices joining the network for the first time.

Notice: You will also receive device announcements for ZigBee Green Power devices. Such
announcements have an IEEE extended address marked as invalid (FF:FF:FF:FF:FF:FF:FF:FF),
and should typically be ignored.

CAUTION: This callback is potentially invoked from another thread than the main thread. Make sure
your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously

returned by a successful call to
OpenDevice().

pfnOnNotifyDeviceAnnoucement ONNOTIFYDEVICEANNOUNCEMENTHANDLER
(in)

Pointer to an application-defined
callback, which the framework
invokes when it has received a
ZDO device announcement.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONNOTIFYDEVICEANNOUNCEMENTHANDLER)
 (const HANDLE hDevice, const unsigned char bApplication,
 unsigned long long qwAddress, unsigned short wAddress,
 unsigned char bCapabilities, unsigned int dwTimestamp);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
bApplication unsigned char (in) The application endpoint this notification is for.

Each registered application endpoint will receive a
notification.

qwAddress unsigned long long (in) IEEE extended address of the device joining or re-
joining the network.

wAddress unsigned short (in) Network short address of the device joining or re-
joining the network.

bCapabilities unsigned char (in) The IEEE 802.15.4 MAC layer capabilities of the
device joining or re-joining the network.

dwTimestamp unsigned int (in) Time-stamp of the device announcement frame as
reported by the IEEE 802.15.4 MAC layer

Return Value

http://www.ubisys.de

48 www.ubisys.de

A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

49 www.ubisys.de

5.1.7.5. SetOnNotifyPermitJoining()– Install Permit Joining Handler

Declaration
HRESULT STDAPICALLTYPE SetOnNotifyPermitJoining(const HANDLE hDevice,
 const ONNOTIFYPERMITJOININGHANDLER pfnOnNotifyPermitJoining);

Synopsis
Installs a notification handler for changes to the adapter’s permit joining state. This covers both cases,
the ZigBee adapter opening the network for joining, or another device on the network opening the
network for joining. It is not directly connected to the ZDO, rather to the MAC layer.

CAUTION: This callback is potentially invoked from another thread than the main thread. Make sure
your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
pfnOnNotifyPermitJoining ONNOTIFYPERMITJOININGHANDLER

(in)
Pointer to an application-defined callback,
which the framework invokes when the local
permit joining state changes.

Callback Signature

The callback handler must have the following signature:

typedef HRESULT (STDAPICALLTYPE *ONNOTIFYPERMITJOININGHANDLER)
 (const HANDLE hDevice, bool bAssociationPermit);

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
bAssociationPermit bool (in) True if the IEEE 802.15.4 MAC layer currently

permits association of new devices, false
otherwise.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

50 www.ubisys.de

5.1.8. Utility Functions

5.1.8.1. GetStatusString()– ZigBee status code as text

Declaration
HRESULT STDAPICALLTYPE GetStatusString(const LPTSTR pszStatus,
 const size_t cwStatus, const unsigned char nStatus);

Synopsis
Returns a human-readable string for the status code passed-in by the caller. Covers status codes of
the IEEE 802.15.4 Medium Access Control Layer (MAC), ZigBee Network Layer (NWK) and ZigBee
Application Support Sublayer (APS). The string is suitable for creating debug output messages. It is
typically not useful for presentation to end-users, as it is extremely technical and English only. Examples
are “SUCCESS” for a status of zero, “NWK:INVALID_PARAMETER” for status code 0xC1, etc. When
possible, the function will denote the subsystem where the status code originated as either “MAC”,
“NWK”, or “APS”. For unknown status codes, it will provide a hexadecimal number as ASCII string.

Arguments
Argument Type (Direction) Description

pszStatus LPTSTR (in for location, out for
data stored at this location)

Pointer to a string buffer, which will receive a status string with a
textual representation for the status code supplied in nStatus.
The buffer must be large enough to store cwStatus characters,
including a trailing null terminator.

cwStatus size_t (in) Number of characters, including a trailing zero, which can be
stored in the output buffer. Notice this is the number of characters,
not the size in bytes.

nStatus unsigned char (in) A status code from the IEEE 802.15.4 MAC, the ZigBee Network
Layer (NWK), or the ZigBee Application Support Sublayer (APS).

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
std::wstring GetStatusString(const unsigned char nStatus)
{
 wchar_t szStatus[32];

 VERIFY(SUCCEEDED(u7bfx::GetStatusString(szStatus, _countof(szStatus),
 nStatus)));

 return std::wstring(szStatus);
}

HRESULT STDAPICALLTYPE OnConfirmData(const HANDLE hDevice,
 unsigned int dwRequestID, unsigned int dwTimestamp, unsigned char bStatus)
{
 std::wcout << L"APSDE-DATA.confirm (request #" << std::dec << dwRequestID
 << L", status = " << std::hex << std::setw(2) << std::setfill(L'0')
 << static_cast<unsigned int>(bStatus) << L" - "
 << GetStatusString(bStatus).c_str() << L", time-stamp = " << std::dec
 << dwTimestamp << L")" << std::endl;

 // Handle the APSDE-DATA.confirm...

http://www.ubisys.de

51 www.ubisys.de

}

http://www.ubisys.de

52 www.ubisys.de

5.1.8.2. GetDeviceObjectStatusString()– ZDO status code as text

Declaration
HRESULT STDAPICALLTYPE GetDeviceObjectsStatusString(const LPTSTR pszStatus,
 const size_t cwStatus, const unsigned char nStatus);

Synopsis
Returns a human-readable string for the status code passed-in by the caller. Covers status codes of
the ZigBee Device Objects (ZDO) and for unknown status codes, GetStatusString() will be
called implicitly, adding coverage for MAC, NWK and APS. The string is suitable for creating debug
output messages. It is typically not useful for presentation to end-users, as it is extremely technical and
English only. Examples are “SUCCESS” for a status of zero, “ZDO:INV_REQUESTTYPE” for status
code 0x80, etc.

Arguments
Argument Type (Direction) Description

pszStatus LPTSTR (in for location, out for
data stored at this location)

Pointer to a string buffer, which will receive a status string with a
textual representation for the status code supplied in nStatus.
The buffer must be large enough to store cwStatus characters,
including a trailing null terminator.

cwStatus size_t (in) Number of characters, including a trailing zero, which can be
stored in the output buffer. Notice this is the number of characters,
not the size in bytes.

nStatus unsigned char (in) A status code from the IEEE 802.15.4 MAC, the ZigBee Network
Layer (NWK), the ZigBee Application Support Sublayer (APS), or
the ZigBee Device Object (ZDO).

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Refer to the example in section 0 for GetStatusString(), which is very similar.

http://www.ubisys.de

53 www.ubisys.de

5.1.8.3. GetClusterLibraryStatusString()– ZCL status code as text

Declaration
HRESULT STDAPICALLTYPE GetClusterLibraryStatusString(const LPTSTR pszStatus,
 const size_t cwStatus, const unsigned char nStatus);

Synopsis
Returns a human-readable string for the status code passed-in by the caller. Covers status codes of
the ZigBee Cluster Library (ZCL). The string is suitable for creating debug output messages. It is
typically not useful for presentation to end-users, as it is extremely technical and English only. Examples
are “ZDO:SUCCESS” for a status of zero, “ZDO:FAILURE” for status code 0x01, etc. For unknown
status codes, GetStatusString() will be called implicitly.

Arguments
Argument Type (Direction) Description

pszStatus LPTSTR (in for location, out for
data stored at this location)

Pointer to a string buffer, which will receive a status string with a
textual representation for the status code supplied in nStatus.
The buffer must be large enough to store cwStatus characters,
including a trailing null terminator.

cwStatus size_t (in) Number of characters, including a trailing zero, which can be
stored in the output buffer. Notice this is the number of characters,
not the size in bytes.

nStatus unsigned char (in) A status code from the IEEE 802.15.4 MAC, the ZigBee Network
Layer (NWK), the ZigBee Application Support Sublayer (APS), or
the ZigBee Cluster Library (ZCL).

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

Example
Refer to the example in section 0 for GetStatusString(), which is very similar.

http://www.ubisys.de

54 www.ubisys.de

5.1.8.4. GetDataStatistics()– Obtain APS statistics

Declaration
HRESULT STDAPICALLTYPE GetDataStatistics(const HANDLE hDevice,
 unsigned int &nDataRequests, unsigned int &nDataConfirms,
 unsigned int &nDataIndications);

Synopsis
Returns the number of APS data requests, data confirmations and data indications exchanged over the
adapter’s APS interface. These are diver metrics, not metrics collected at the ZigBee stack level. Mainly
for diagnostic purposes at early stages of integration into customer applications.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
nDataRequests unsigned int (in) Number of data requests received from the

application.
nDataConfirms unsigned int (in) Number of data confirmations issued towards the

application.
nDataIndications unsigned int (in) Number of data indications issued towards the

application.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

55 www.ubisys.de

5.1.8.5. GetDeviceTransactionStatistics()– Obtain ZDO statistics

Declaration
HRESULT STDAPICALLTYPE GetDeviceTransactionStatistics(const HANDLE hDevice,
 unsigned int &nRequests, unsigned int &nConfirms);

Synopsis
Returns the number of ZDO requests and confirmations exchanged over the adapter’s ZDO interface.
These are driver metrics, not metrics collected at the ZigBee stack level. Mainly for diagnostic
purposes at early stages of integration into customer applications.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously returned by a

successful call to OpenDevice().
nRequests unsigned int (in) Number of ZDO requests received from the

application.
nConfirms unsigned int (in) Number of ZDO confirmations issued towards the

application.

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

56 www.ubisys.de

5.1.8.6. RequestNetworkDiscovery()– Scan for ZigBee Networks in the Vicinity

Declaration
HRESULT STDAPICALLTYPE RequestNetworkDiscovery(const HANDLE hDevice,
 const unsigned int dwScanChannels, const unsigned char bScanDuration,
 const ONCONFIRMNETWORKDISCOVERYHANDLER pfnOnConfirmNetworkDiscovery);

Synopsis
Scans a set of channels for ZigBee and other IEEE 802.15.4 networks. When complete, the
application-defined callback receives a list of network descriptors. With this feature, an application
might display a site survey, and provide users with a choice of networks to join, for example.

CAUTION: The completion handler is potentially invoked from another thread than the thread originally
invoking RequestNetworkDiscovery(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle previously

returned by a successful call to
OpenDevice().

dwScanChannels unsigned int (in) A 32-bit channel mask
indicating which channels to
scan. For example,
0x07FFF800 scans all 16
channels in the 2.4GHz band.

bScanDuration unsigned char (in) Duration of the active scan on
each channel, as per IEEE
802.15.4. Refer to MLME-
SCAN.request for details.

pfnOnConfirmNetworkDiscovery ONCONFIRMNETWORKDISCOVERYHANDLER (in) Pointer to an application-
defined callback, which the
framework invokes when it has
completed the network scan.

The completion handler has following signature:
typedef HRESULT (STDAPICALLTYPE *ONCONFIRMNETWORKDISCOVERYHANDLER)
 (const HANDLE hDevice, unsigned char bStatus,
 const unsigned int nNetworkCount,
 const CZigBeeNetworkDescriptor *const pDescriptors);

And each network will be conveyed as a CZigBeeNetworkDescriptor:

///
// CZigBeeNetworkDescriptor

class CZigBeeNetworkDescriptor
{
 // Attributes
 public:
 // The 64-bit PAN identifier of the network
 unsigned long long m_qwExtendedPANID;

 // The current logical channel occupied by the network
 unsigned char m_nLogicalChannel;

 // A ZigBee stack profile identifier indicating the stack profile in

http://www.ubisys.de

57 www.ubisys.de

 // use in the discovered network
 unsigned char m_nStackProfile;

 // The version of the ZigBee protocol in use in the discovered network
 unsigned char m_nZigBeeVersion;

 // This specifies how often the MAC sub-layer beacon is to be
 // transmitted by a given device on the network
 unsigned char m_nBeaconOrder;

 // For beacon-oriented networks, that is, beacon order < 15, this
 // specifies the length of the active period of the superframe
 unsigned char m_nSuperframeOrder;

 // A value of TRUE indicates that at least one ZigBee router on the
 // network currently permits joining, i.e. its NWK has been issued an
 // NLME-PERMIT-JOINING primitive and, the time limit if given, has not
 // yet expired
 bool m_bPermitJoining;

 // This value is set to true if the device is capable of accepting join
 // requests from router-capable devices
 bool m_bRouterCapacity;

 // This value is set to true if the device is capable of accepting join
 // requests from end devices and set to FALSE otherwise
 bool m_bEndDeviceCapacity;
};

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

58 www.ubisys.de

5.1.8.7. RequestEnergyDetectionScan()– Measure Energy in Channels

Declaration
HRESULT STDAPICALLTYPE RequestEnergyDetectionScan(const HANDLE hDevice,
 const unsigned int dwScanChannels, const unsigned char bScanDuration,
 const ONCONFIRMENERGYDETECTIONSCANHANDLER pfnOnConfirmEnergyDetectionScan);

Synopsis
Measures the energy in a set of channels. This could be useful for determining background noise and
interference levels for diagnostic purposes, or for selecting a new operating channel for the network.
When complete, the application-defined callback receives a list of energy values, one byte for each
scanned channel.

CAUTION: The completion handler is potentially invoked from another thread than the thread originally
invoking RequestEnergyDetectionScan(). Make sure your handler is thread-safe.

Arguments
Argument Type (Direction) Description
hDevice HANDLE (in) A device handle

previously returned by
a successful call to
OpenDevice().

dwScanChannels unsigned int (in) A 32-bit channel mask
indicating which
channels to scan. For
example, 0x07FFF800
scans all 16 channels
in the 2.4GHz band.

bScanDuration unsigned char (in) Duration of the active
scan on each channel,
as per IEEE 802.15.4.
Refer to MLME-
SCAN.request for
details.

pfnOnConfirmEnergyDetectionScan ONCONFIRMENERGYDETECTIONSCANHANDLER (in) Pointer to an
application-defined
callback, which the
framework invokes
when it has completed
the energy scan.

The completion handler has following signature:
typedef HRESULT (STDAPICALLTYPE *ONCONFIRMENERGYDETECTIONSCANHANDLER)
 (const HANDLE hDevice, unsigned char bStatus,
 const unsigned int dwScannedChannels,
 const unsigned char *const pEnergyLevels);

Return Value
A HRESULT conveying the success/failure of the operation and potentially other information, like error
codes in case of a failure. You should use the macros SUCCEEDED() and FAILED() to evaluate the
return value. Typically, the return code will be S_OK.

http://www.ubisys.de

59 www.ubisys.de

 7Bfx™ for Linux

On Linux the 7Bfx™ API is provided as a static library, using UTF-8 for different architectures.

 Release, UTF-8: lib7bfx.a
 Debug, UTF-8: lib7bfxd.a

 7Bfx™ for Microsoft Windows

On Windows, the 7Bfx™ API is provided as a dynamic link library (DLL). Currently, ubisys provides
Unicode UTF-16 builds of the DLLs for 32- and 64-bit systems in debug and release configurations. It
runs on any 32-bit or 64-bit Windows, starting from Windows XP, currently including Windows 10:

 32-bit Intel x86, Release, UTF-16: 7bfx.lib and 7bfx.dll
 64-bit Intel x86, Release, UTF-16: 7bfx-x64.lib and 7bfx-x64.dll
 32-bit Intel x86, Debug, UTF-16: 7bfxd.lib and 7bfxd.dll
 64-bit Intel x86, Debug, UTF-16: 7bfxd-x64.lib and 7bfxd-x64.dll

The ubisys Network Manager™ software on Windows also uses this DLL to connect to U1 devices
attached to a Windows computer.

You can use the DLL with any programming language and toolchain, which supports DLLs. However,
ubisys currently only provides a C++ SDK. Therefore, you may have to provide the symbol definitions
yourself for the language of your choosing. For example, when using C# you could use DLLImport
annotations:

[DLLImport("7bfx-x64.dll", EntryPoint = "#1", CharSet = CharSet.Unicode,
SetLastError=false, CallingConvention=CallingConvention.StdCall)]
public static extern int Initialize(ref IntPtr handle);

For plain C, small tweaks of the u7bfx header would be required in order not to use C++ features like
namespaces and references.

http://www.ubisys.de

60 www.ubisys.de

6. INSTALLATION

 Hardware Installation

Plug the USB dongle into any available USB slot on your PC, which is able to supply 50mA of
operating current. All USB ports (including passive hubs) should be suitable.

 Software Installation

Currently, the ZigBee USB/Adapter is being used in conjunction with the “ubisys ZigBee Network
Manager” (a Windows software application) and is also embedded into the ubisys ZigBee/Ethernet
Gateway G1, which runs Linux. Device drivers for Windows, Linux and other operating systems are
available upon request, as well as a complete documentation of the native ZigBee/USB protocol. Also
available is a complete implementation of the ZigBee/IP Gateway Device with raw binary TCP/IP
interface (GRIP), which runs on Linux, and is the core of the ZigBee/Ethernet Gateway ubisys G1.

Notice: The information mentioned above is only available to qualified customers for high-volume
projects. Please contact ubisys sales for enquiries.

6.2.1. Linux udev Rules

Add a new udev rule provide read/write access to applications using the persistent USB rules (for
example /etc/udev/rules.d/70-persistent-usb.rules in ubuntu), for instance:

This file maintains persistent names for USB devices.
See udev(7) for syntax.

Entries are automatically added by the 75-cd-aliases-generator.rules
file; however you are also free to add your own entries provided you
add the ENV{GENERATED}=1 flag to your own rules as well.

#USB devices

SUBSYSTEM=="usb",ENV{DEVTYPE}=="usb_device",ATTRS{idVendor}=="19a6",ATTRS{idProduct}=="00
04",MODE="0666"

Then reload the rules and retrigger:

$ udevadm control --reload-rules
$ udevadm trigger

http://www.ubisys.de

61 www.ubisys.de

7. INITIAL DEVICE START-UP

The ZigBee/USB Adapter’s start-up behaviour is completely defined by the application controlling it.

http://www.ubisys.de

62 www.ubisys.de

8. MAN-MACHINE INTERFACE (MMI)

The application must provide a suitable man-machine-interface (e.g. on a computer screen or using a
LED and a push-button) for commissioning and factory reset. The ZigBee/USB Adapter U1 does not
contain any MMI.

http://www.ubisys.de

63 www.ubisys.de

9. ZIGBEE INTERFACE

Please refer to the following IEEE and ZigBee Alliance documents, which apply to this product:

[R1] IEEE Standard 802 – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
[R2] ZigBee Specification, Revision 21, Document No. 05-3474-21
[R3] ZigBee 2015 Layer PICS and Stack Profiles, Revision 6, Document No. 08-0006-06
[R4] ZigBee Cluster Library Specification, Revision 5, Document No. 07-5123-05
[R5] ZigBee Home Automation Public Application Profile 1.2, Revision 29, Document No. 05-3520-29
[R6] ZigBee Smart Energy Standard 1.1b, Revision 18, Document No. 07-5356-18

Device Anatomy
The application controlling the ZigBee/USB Adapter U1 has complete control over the ZigBee
anatomy of the device, except for endpoint #0, which hosts the ZigBee Device Object, and certain
reserved endpoints:

Endpoint # Profile Application

0 (0x00) 0x0000: ZigBee Device Profile ZigBee Device Object (ZDO) – standard management features
1 (0x01)

…239 (0xEF)
0x0104: ZigBee Common Profile
(typically, set by host application)

Defined by host application

240 (0xF0) n/a Reserved
241 (0xF1) n/a Reserved
242 (0xF2) 0xA1E0: ZigBee Green Power Profile ZigBee Green Power Proxy or Combined Proxy and Sink
243 (0xF3)

… 254 (0xFE)
n/a Reserved

255 (0xFF) n/a Broadcast endpoint address (broadcast to all endpoints)

The ubisys ZigBee manufacturer ID is 0x10F2. This manufacturer code is used to identify upgrade
images, for accessing manufacturer-specific ZCL attributes and commands etc.

Installation Code
This router has a pre-configured link key, which is derived from the installation code printed on the back
of the router’s housing in text format and as a two-dimensional barcode (QR code). The format
specified in [R6], section 5.4.8.1.1 is used with a full 128-bit installation code + 16-bit CRC. The QR
code contains additional information as illustrated in the following example:

ubisys2/R0/001FEE00000000FF/0F7C1CD805F91649EBA84580AA1CB432F51A/21

Here, “ubisys2” is the data format identifier, R0 is the model string (this is just an example, it would be
“U1” for this product), followed by the EUI-64, the installation code, and a checksum that covers the
entire information (including model, EUI-64 and installation code), all separated by a single dash
character (‘/’). The check sum is an unsigned 8-bit integer, which is calculated by performing a byte-
wise exclusive-or (XOR, “”) of the ASCII characters of the model string, the binary representation of
the EUI-64 (in big endian format), and the binary representation of the install code.

For the example above, this calculation yields:

http://www.ubisys.de

64 www.ubisys.de

52 (‘R’) 30 (‘0’)
00 1F EE 00 00 00 00 FF
0F 7C 1C D8 05 F9 16 49 EB A8 45 80 AA 1C B4 32 F5 1A = 21

Notice: The data format “ubisys1” is identical to “ubisys2” except for the check sum, which is present,
but invalid. If you encounter “ubisys1” labels, then do not verify the trailing check sum field.

http://www.ubisys.de

65 www.ubisys.de

 Application Endpoint #0 – ZigBee Device Object

Please refer to the ZigBee Specification [R2] for details on the ZigBee Device Object (ZDO) and the
protocol used for over-the-air communication, called the ZigBee Device Profile (ZDP). Notice that the
ZDP is fundamentally different from typical application endpoints, which build on the ZigBee foundation
framework and the ZigBee Cluster Library (ZCL).

The ubisys ZigBee/USB Adapter U1 supports the following ZDO services:

Primitive Description

nwk_addr_req/
nwk_addr_rsp

Network address request/response
Translates a 64-bit IEEE address into a 16-bit network short address. Use only when really
required, because this message employs a network-wide broadcast (flooding)

ieee_addr_req/
ieee_addr_rsp

IEEE address request/response
Translates a 16-bit network short address into a 64-bit IEEE address.

node_desc_req/
node_desc_rsp

Node descriptor request/response
Returns information such as the manufacturer ID, power supply, etc.

power_desc_req/
power_desc_rsp10

Power descriptor request/response
Returns information such as the power source and mode.

active_ep_req/
active_ep_rsp

Active endpoints request/response
Returns a set of available application endpoints on the device.

simple_desc_req/
simple_desc_rsp

Simple descriptor request/response
Returns a descriptor for a certain application endpoint with a list of available services
(clusters).

match_desc_req/
match_desc_rsp

Match descriptor request/response
Searches for a certain cluster or set of clusters and returns the matching endpoints, if any.

device_annce Device announcement
Advertises the presence of a new device in the network.

parent_annce/
parent_annce_rsp11

Parent announcement/response
This is part of the ZigBee 2015 end-device child management feature.

system_server_discovery_req/
system_server_discovery_rsp12

System server discovery request/response
Provides the ability to discover system servers, in particular the network manager.

bind_req/
bind_rsp

Bind request/response
Creates an application binding

unbind_req/
unbind_rsp

Unbind request/response
Removes an application binding

mgmt_nwk_disc_req/
mgmt_nwk_disc_rsp13

Management: Network discovery request/response
Instructs the device to perform a network discovery and report the results back.

mgmt_lqi_req/
mgmt_lqi_rsp

Management: Neighbor table request/response
Returns information about neighboring devices, including the link quality, device type etc.

mgmt_rtg_req/
mgmt_rtg_rsp

Management: Routing table request/response
Returns information about routes established on the device.

mgmt_bind_req/
mgmt_bind_rsp

Management: Binding table request/response
Returns information about application bindings on the device.

mgmt_leave_req/
mgmt_leave_rsp

Management: Leave request/response
Makes the device leave the network or removes one of its end-device children.

mgmt_permit_joining_req/
mgmt_permit_joining_rsp

Management: Permit joining request/response
Opens the network for new devices to join.

mgmt_nwk_update_req/
mgmt_nwk_update_notify14

Management: Network update request/response/notification
Performs energy scans, instigates a channel change or assigns the network manager.

10 Available in ZigBee stack version 1.60 and above. Legacy ZCP requirement – do not use in applications
11 Available in ZigBee stack version 1.56 and above.
12 Available in ZigBee stack version 1.50 and above.
13 Available in ZigBee stack version 1.61 and above.
14 Available in ZigBee stack version 1.61 and above.

http://www.ubisys.de

66 www.ubisys.de

 Application Endpoint #242 – ZigBee Green Power

This endpoint provides the ZigBee Green Power feature according to the 2015 edition of the
specification, i.e. including support for Green Power Devices with IEEE EUI-64 and bidirectional
commissioning. The ZigBee traffic between Proxies and Sinks utilizes standard ZigBee foundation
paradigms and the ZigBee Cluster Library [R4]. You may use the standard ZCL frames to enumerate,
read and write attributes, invoke commands, etc.

The application endpoint exposes the following clusters:

Cluster Direction Description

0x0021 Outbound
(Client)

ZigBee Green Power Proxy
Allows sinks on the network to configure this device as a “Proxy”, i.e. access point for ZigBee
Green Power Devices into the ZigBee mesh network.

9.2.1. Green Power Cluster (Client)

The client-side of the Green Power cluster provides the ZigBee Green Power Proxy functionality, i.e.
makes the device act as an “access point” for Green Power Devices (GPDs). This implementation
supports unidirectional and bidirectional15 GPDs.

Attributes supported:

Attribute Type Description

0x0010 unsigned8,
read-only

gppMaxProxyTableEntries
The number of proxy table entries supported by this device

0x0011 extended raw
binary,
read-only,
persistent

ProxyTable
Entries in the proxy table create a link between Green Power Devices and Green Power Sinks

0x0016 bitmap24,
read-only

gppFunctionality
Indicates Green Power features and building blocks supported by this device

0x0017 bitmap24,
read-only

gppActiveFunctionality
Allows to disable certain Green Power features on this device

0x0020 bitmap8,
persistent

gpSharedSecurityKeyType
Determines the security key type to use for devices with bidirectional commissioning
capabilities, i.e. out-of-the-box individual key, shared GP key, etc.

0x0021 key128,
persistent

gpSharedSecurityKey
The 128-bit AES-CCM* key that is being used to secure Green Power data frames

0x0022 key128,
persistent

gpLinkKey
The 128-bit AES-CCM* key that is being used to deliver keying material to Green Power
devices

Cluster commands supported:

Command Description

0x01 GP Pairing
Creates, updates or removes proxy table entries

0x02 GP Proxy Commissioning Mode
Makes the proxy enter commissioning mode for a particular sink, or leave commissioning mode

15 Bidirectional communication is currently limited to the commissioning stage

http://www.ubisys.de

67 www.ubisys.de

0x06 GP Response
Tunnels GP data frames from a sink to a bidirectional Green Power Device

0x0B GP Proxy Table Request
Allows to query the proxy table for a certain Green Power Device or read out the table in chunks

Cluster commands transmitted:

Command Description

0x00 GP Notification
Tunnels GP frames from a Green Power Device to one or more sinks or groups of sinks

0x04 GP Commissioning Notification
Tunnels GP frames from a Green Power Device to a sink in commissioning mode

0x0B GP Proxy Table Response
Conveys a set of proxy table entries to a sink or management application

9.2.2. Green Power Cluster (Server)

This ZigBee/USB Adapter is capable of promoting its Green Power Endpoint to a Green Power
Combined application. This requires a sink implementation in the host application, which works in
tandem with the proxy application running on U1. For details, please contact support@ubisys.de.

http://www.ubisys.de
mailto:support@ubisys.de.

68 www.ubisys.de

10. PHYSICAL DIMENSIONS

Figure 2: ZigBee/USB Adapter U1 with on-board PCB antenna

Figure 3: ZigBee/USB Adapter U1-Q with on-board PCB antenna

http://www.ubisys.de

69 www.ubisys.de

11. ORDERING INFORMATION

The following tables list the product variants available. Use the specified order code for your orders.
Please contact ubisys support if you require any customization.

Case Firmware variant Order Code

Black ZigBee/USB Adapter U1 9072

Black ZigBee/USB Adapter U1-Q 9096

http://www.ubisys.de

70 www.ubisys.de

12. GENERAL TERMS & CONDITIONS OF BUSINESS

When placing your order you agree to be bound by our General Terms & Conditions of Business,
“Allgemeine Geschäftsbedingungen”, which are available for download here:
http://www.ubisys.de/en/smarthome/terms.html

http://www.ubisys.de
http://www.ubisys.de/en/smarthome/terms.html

71 www.ubisys.de

13. DECLARATION OF CONFORMITY

We – ubisys technologies GmbH, Am Wehrhahn 45, 40211 Düsseldorf, Germany – declare under our
sole responsibility that the ubisys ZigBee/Adapter U1 with order codes as detailed in section 11 under
the trade name “ubisys” to which this declaration relates are in conformity with the following directives
and standards:

Directive/Standard Description/Scope

2014/53/EU Radio Equipment Directive (RED)

2004/108/EC Electromagnetic Compatibility Directive (EMC)

2006/95/EC Low Voltage Directive (LVD)

2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

2002/95/EC Restriction of Hazardous Substances Directive (RoHS)

EN 300 328 ERM; Wideband transmission systems; 2.4 GHz ISM band

EN 300 440 ERM; Radio equipment to be used in the 1 GHz to 40 GHz frequency range

EN 301 489 EMC

IEEE 802.15.4 IEEE Standard 802 – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)

ZigBee 3.0 ZigBee 2015 with Green Power

Düsseldorf, Germany April 28, 2016

Place of issue Date of issue

Dr.-Ing. Arasch Honarbacht Managing Director, Head of Research & Development

Full name of Authorized Signatory Title of Authorized Signatory

Signature Seal

http://www.ubisys.de

72 www.ubisys.de

14. REVISION HISTORY

Revision Date Remarks
1.0 11/14/2014 Initial Public Version
1.1 11/11/2015 Updated the ZDO description to include enhancements

and additions made for ZigBee 2015 platform
compliance

1.2 09/13/2016 Updated to ZigBee 3.0 Certified Product in application
firmware 1.68

1.3 01/03/2017 Added USB protocol description placeholder and
7Bfx™ API documentation

1.4 01/25/2017 Added details about ZigBee/USB Adapter U1-Q,
including architecture (SAM4S+GP712+RFX2411),
dimensions, and order code. Added system architecture
diagram

http://www.ubisys.de

73 www.ubisys.de

15. CONTACT

UBISYS TECHNOLOGIES GMBH
AM WEHRHAHN 45
40211 DÜSSELDORF
GERMANY

T: +49 (211) 54 21 55 - 00
F: +49 (211) 54 21 55 - 99

www.ubisys.de
info@ubisys.de

http://www.ubisys.de
http://www.ubisys.de
mailto:info@ubisys.de

