

13.56 MHz RFID USB READER
REFERENCE MANUAL

2 www.ubisys.de 

1. Overview

Welcome to your ubisys RFID reader solution!

This reference manual provides operating and maintenance instructions, command references, a tag
compliance matrix, and other detailed product information. If you have any questions or need additional
support, drivers, software, libraries or source code samples, please visit our RFID support pages.

http://www.ubisys.de/rfid/support.html

3 www.ubisys.de 

2. Contents

1. Overview ... 2

2. Contents.. 3

3. Features ... 5

4. Supported TAGs ... 7

5. CDC Firmware ... 9

5.1. Features .. 9

5.2. CDC/ACM AT Command set ... 9

5.2.1. Port Settings ... 9

5.2.2. General Frame Format.. 9

5.2.3. Device Information ... 9

5.2.4. Echo Control ... 10

5.2.5. Light-Emitting Diode Control .. 10

5.2.6. Buzzer Control .. 11

5.2.7. Inventory Scan .. 11

5.2.8. Inventory Scan (without Anti-Collision) .. 12

5.2.9. Select Tag ... 12

5.2.10. Get System Information ... 13

5.2.11. Read Data Block ... 14

5.2.12. Write Data Block ... 14

5.2.13. Lock Data Block .. 15

5.2.14. Enable/Disable RF field ... 17

5.2.15. Query RF field status .. 17

5.2.16. Automatic Scan Mode ... 18

6. HID Firmware ... 19

6.1. Features .. 19

6.2. Operation ... 19

7. CCID Firmware .. 20

7.1. Driver Installation .. 20

7.2. Features and Tag Support ... 22

7.3. ATR Strings ... 23

7.3.1. ATR for ISO14443-4 ... 23

7.3.2. ATR for Memory Cards (ISO15693, ISO14443-3 Type A).. 23

4 www.ubisys.de 

7.4. APDU Format .. 24

7.4.1. Request APDU ... 24

7.4.2. Response APDU .. 24

7.5. APDU Definitions.. 25

7.5.1. Tag Identification Commands ... 25

7.5.2. Configuration commands .. 25

7.5.3. Memory Card Access Commands .. 29

7.5.4. Extended ISO15693 Information Commands .. 30

7.5.5. ISO15693 Transparent mode .. 31

8. Firmware update .. 33

9. ubisys RFID/Smart Card API .. 40

9.1. Overview... 40

9.2. Basic RFID/Smart Card API .. 40

9.2.1. CSmartCardContext ... 40

9.2.2. CSmartCard ... 41

9.2.3. CSmartCardTransaction .. 42

9.2.4. CSmartCardStatusReceiver ... 42

9.2.5. CSmartCardStatusListener ... 43

9.2.6. CSmartCardExceptionHelper ... 44

9.2.7. Pre-defined Exception Classes .. 45

10. Physical Dimensions .. 47

11. Ordering Information .. 50

11.1. USB Stick .. 50

11.2. Desktop Pro .. 50

11.3. Desktop .. 51

12. Declaration of Conformity ... 52

13. Document revision history .. 53

14. Contact ... 54

5 www.ubisys.de 

3. Features

- Versatile reader supporting three USB modes of operation: CCID = smart card reader, HID = keyboard
emulation, CDC/ACM = virtual serial port. Features out-of-the box OS support, i.e. no driver installation
on Microsoft Windows, Apple MacOS X and Linux – except for CDC/ACM mode, which requires a
driver information file on Windows (32- and 64-bit drivers available)

- 13.56 MHz HF RFID, supports all ISO 14443A and ISO 15693 tags,
with ISO 14443B and ISO 18000-3 available upon request

- Supported tags include Texas Instruments Tag-It HF-I, NXP i-code SLI, NXP Mifare Ultralight, NXP
Mifare DESFire, NXP Mifare DESFire EV1

- Extensible and future-proof design: Firmware updates via USB
- USB 2.0 full-speed device, bus-powered, 90mA in active mode, 30mA in stand-by. Thus, can be

plugged into any USB port, even into passive hub ports, such as those integrated into keyboards. Less
than 100mA when both LEDs are on (Desktop Reader Pro only), and additional 100mA for a total of
200mA when sound output is active (Desktop Reader Pro only)

- 70mW output power, approximately 10cm reading range with typical antenna/tag combinations
- Supported by ubisys® RFID Control Center, a sophisticated graphical user interface application for

evaluation, testing and firmware updates (Windows only)
- Three device classes available: USB stick, Desktop Reader Pro with two LEDs (red, green) and a buzzer

in premium design, and a classic desktop reader case
- Flexible antenna configurations:

o 50 Ohm SMA connector for industrial and commercial environments
o Standard printed circuit-board antenna coils available matched to 50 Ohm at 13.56 MHz

- Customizable OEM versions available, including customer-specific antenna coil designs
- Industrial temperature range: -40 °C ... +85 °C (Desktop Pro: -40°C ... +60°C)
- Different firmware types are available, can be used and exchanged depending on customer requirements

o CDC/ACM – Virtual Serial Port

The reader appears as a virtual serial port (COM port) by implementing the USB
Communications Device Class, Abstract Control Model (CDC/ACM) specification. All major
operating systems, including Windows, MacOS X and Linux support such devices out-of-the-
box – without the need for special device drivers. An “AT”-like command set is provided to
inventory tags and to access them. CDC/ACM was designed for industrial grade applications.
The firmware includes support for anti-collision inventory scan (bulk mode) and link-quality
assessment based on received signal strength indications.

o HID – Virtual USB Keyboard
The device appears as a keyboard by implementing the USB Human Interface Device Class
(HID) specification with the keyboard usage page. All major operating systems, including
Windows, MacOS X and Linux support such devices out-of-the-box – without the need for
special device drivers.
Whenever a tag is identified, it automatically “types” the unique identification number as a
hexadecimal number, followed by return. Customized versions, which type additional or
customized data (e.g. reader serial number combined with UID, memory content, encryption,
certificates etc.) are available upon request.
HID mode perfectly suited for web applications in heterogeneous IT environments (“cloud”)

o CCID – Smart Card reader
The device appears as a Smart Card reader (Chip Card Interface Device, CCID) with one virtual
slot. Standard CCID device drivers, provided with all major operating systems, will be used.
Supports access to ISO15693 memory cards, identification of ISO15693 non-memory cards,
identification of cards according to ISO14443A-3 (Mifare Classic/Mini/Ultralight) and full
access to cards according to ISO14443-4 (Mifare DESFire, NXP SmartMX etc.).
Compatible with many desktop virtualization solutions (including Microsoft and Citrix products)

6 www.ubisys.de 

Reader devices can be ordered with the firmware of choice (CDC/ACM, HID or CCID) and can later be
updated to newer firmware releases as well as to other firmware types, by using the ubisys RFID Control
Center (see section 8).

7 www.ubisys.de 

4. Supported TAGs

 CDC HID CCID
Remarks UID R/W UID R UID R/W D/E

ISO15693

 ICODE SLI       

 ICODE SLI-L       

 ICODE SLI-S       

 ICODE SLI-SY       

 ICODE UID       

 ICODE UID-OPT       

 ICODE EPC       

ICODE 1 - - - - - - -

 ICODE HC       

 TAG it HF-I       

 TAG it HF-I Pro       

 TAG it HF-I Plus       

 Legic Advant MV  -  -  - -

 STM LRI64        LRI64 tags require 10% modulation depth, 1-
out-of-4 coding, single subcarrier setting and
high data rate.

The CCID firmware can be configured for these
parameters. CDC does not currently support
configuration. A modified firmware can be
provided on request.

 STM LRI2K       

 STM LRIS2K       

 Fujitsu MB89R118        Requires CDC Version 1.16 or above, CCID
Version 1.02 or above

ISO14443A storage cards

 Mifare Classic  -  -  - -

 Mifare Ultralight       -

 Mifare Plus       -

 Mifare Mini       -

ISO14443A-4 processor cards

 Mifare DESFire

Mifare DESFire EV1

 -  -  -  No direct read/write access. Library
implementing the application-layer cryptographic
protocol to allow reading/writing data is available
upon request

 Generic ISO14443A-4 cards
(e.g. NXP SmartMX)

 -  -  -  Application-layer protocol depends on the
implemented application.

 Supported
- Not supported, or not applicable
 Available on request as a customer-specific feature

UID read unique identifier (UID)
R/W read/write access
R read-only access
D/E transparent data exchange

8 www.ubisys.de 

Remarks:

Mifare DESFire cards utilize a complex but flexible cryptographic protocol and require authentication,
session setup etc. and offer optional data encryption or message integrity checking. The protocol is not
implemented in the reader itself, but a library is available on request, which implements the protocol
and allows read/write access via the CCID firmware using the transparent data exchange.

Transparent data exchange for ISO15693 tags allows implementing features exceeding the reader-
supported read/write access in the host software. A library implementing further features is available
upon request.

Notice that ISO 15693 tags with eight-byte data blocks (e.g. Fujitsu MB89R118) require at least CDC
version 1.16 or CCID version 1.02 to read data blocks. Previous firmware versions were affected by a
bug. The bug did not affect writing.

9 www.ubisys.de 

5. CDC Firmware

The device appears as a virtual serial port (COM port) by implementing the USB Communications
Device Class, Abstract Control Model (CDC/ACM) specification. All major operating systems,
including Windows (see below), Linux, and MacOS support such devices out-of-the-box.

Microsoft Windows requires an “.inf” file to recognize the device, which installs the built-in Windows
driver. This “.inf” file is (currently) not WHQL certified. Therefore, Microsoft Windows displays a
warning. If you need WHQL certified drivers for Microsoft Windows please file a feature request
(support@ubisys.de). Notice that the “.inf” file is digitally signed however, and thus can be installed on
all 64-bit versions of Microsoft Windows.

A simple AT command set is provided to inventory tags and to access them.

5.1. Features

- The virtual serial port allows easy interfacing to customer-specific applications
- Supports ISO15693 (13.56 MHz) tags, e.g. TI Tag-It HF, NXP i-code SLI etc.
- Features a simple to use, “AT-like” command set that allows scanning for tags, reading and writing

on-tag memories, modifying physical layer parameters, etc.
- Thin abstraction layer over the ISO15693 protocol layer.

5.2. CDC/ACM AT Command set

5.2.1. Port Settings

The device represents itself as a virtual COM port. As such, port settings, like communication speed,
parity or stop bit settings will be ignored. No specific configuration is necessary and the port can be
operated at any settings (without influencing the communication speed).

5.2.2. General Frame Format

Request frames are terminated with a carriage-return character (ASCII code 13 decimal; 0x0d
hexadecimal; “\r” as C string literal). The device terminates response frames with carriage-return
followed by line-feed (ASCII codes 13, 10 decimal; 0x0d, 0x0a hexadecimal, “\r\n” as C string literal).
Do not add any white space (space, back-space, tab, carriage-return, line-feed, etc.), it will not be
removed by the command-line parser and thus leads to “ERROR” responses.

5.2.3. Device Information

This command queries the product information and firmware version of the device.

10 www.ubisys.de 

Syntax

Request ATI

Response <product description>
 S/N <serial number>
 OK

Example

Request ATI

Response UBISYS RFID 13.56 MHz (CDC) 1.05 Aug 18 2010
 S/N 000000A003
 OK

5.2.4. Echo Control

This command enables or disables the echo of typed (received) characters. Enabling the echo is mainly
useful for debugging and for manual testing.

Syntax

Request ATE0 Disable echo
 ATE1 Enable echo. All received characters will be echoed
back.

Response OK

5.2.5. Light-Emitting Diode Control

This command controls the state of the light-emitting diodes (LEDs). Notice that not all hardware
variants feature LEDs. Requires CDC/ACM firmware version 1.12 or above.

Syntax

Request AT+D<led no>=[0|1|2] Changes the state of the specified LED to
 0 = off, 1 = on, or 2 = blinking. If no
 state is specified, the application
 relinquishes control to the firmware.

Response OK

Example

Request AT+D1=1 Turns LED number 1 on.
Response OK

Request AT+D2=0 Turns LED number 2 off.
Response OK

Request AT+D3=2 Makes LED number 3 blink.
Response OK

Request AT+D3= Returns control of LED3 to the firmware.

11 www.ubisys.de 

Response OK

5.2.6. Buzzer Control

This command controls the operating mode of the on-board buzzer. Notice that not all hardware
variants feature a buzzer. Requires CDC/ACM firmware version 1.13 or above.

Syntax

Request AT+B=[0|1] Changes the operating mode of the buzzer
 to 0 = off, or 1 = on. If no operating
 mode is specified, the application
 relinquishes control to the firmware (a
 short beep whenever a transponder is
 detected).

Response OK

Example

Request AT+B=1 Turns buzzer on.
Response OK

Request AT+B=0 Turns buzzer off.
Response OK

Request AT+B= Returns control of the buzzer to the
 firmware.
Response OK

5.2.7. Inventory Scan

Requests an inventory scan. Returns a list of 64-bit unique identifiers and the received signal strength
indicators, as reported by main and auxiliary receivers. If no tags were found, the response is OK (no
UIDs).

ISO 15693 command: 01h (mandatory, supported by all tags)

12 www.ubisys.de 

Syntax

Request AT+I

Response +UID=<uid>,+RSSI=<main>/<aux> [possibly repeated or absent]
 OK

 ERROR automatic scan mode (section 0) enabled

Example

Request AT+I

Response +UID=E00402000058913D,+RSSI=6/6
 +UID=E00402000023F23C,+RSSI=3/2
 OK

5.2.8. Inventory Scan (without Anti-Collision)

Requests an inventory scan without anti-collision. Returns the 64-bit unique identifier of the identified
tag and the received signal strength indicators, as reported by main and auxiliary receivers. If no tag
was found, the response is OK (no UID).

ISO 15693 command: 01h (mandatory, supported by all tags)

Requires CDC/ACM firmware version 1.09 or above.

Syntax

Request AT+i

Response +UID=<uid>,+RSSI=<main>/<aux> [may be absent]
 OK

 ERROR automatic scan mode (section 0) enabled

Example

Request AT+i

Response +UID=E00402000058913D,+RSSI=6/6
 OK

5.2.9. Select Tag

Select a single tag for further processing. The tag access commands (get system information, read
data block, write data block) can either address all tags in the field or only a single tag. If it is known or
expected that more than one tag is in the field, a single tag should be selected.

Requires CDC/ACM firmware version 1.09 or above.

13 www.ubisys.de 

Syntax

Request AT+SELECT=<uid> Select the specified tag for further processing.

 AT+SELECT= Deselect tag. Address all tags in the field from
 now on.
Response OK

Example

Request AT+SELECT=E00402000058913D

Response OK

(tag access commands address the specified tag)

Request AT+SELECT=

Response OK

(tag access commands address all tags in the field)

5.2.10. Get System Information

Obtain the tag’s system information. Returns 64-bit unique identifier, data storage format identifier
(DSFID), application family identifier (AFI), memory block count (BC) and size (BS), and IC
manufacturer defined data (IC). Notice that not all tags support this command and not all tags support
all items. DSFID, AFI and IC are displayed in hexadecimal format, BC and BS in decimal format.

ISO 15693 command: 2Bh (optional, supported by most tags, including NXP i-code SL-2, TI Tag-It
HF-I)

Syntax

Request AT+S

Response +UID=<uid>,DSFID=<dfsid>,AFI=<afi>,BC=<bc>,BS=<bs>,IC=<ic>
 OK

 ERROR tag reported an error, did not respond or automatic scan
 mode (section 0) enabled

Please note that the presence of the DFSID, AFI, BC, BS and IC fields depends on what the tag
supports.

Examples

Request AT+S

Response +UID=E00402000058913D,DSFID=00,AFI=01,BC=40,BS=4,IC=02
 OK

DFSID 00h, AFI 01h, 64 blocks of 4 bytes.

14 www.ubisys.de 

Request AT+S

Response +UID=E00402000058913D,BC=100,BS=1
 OK

No DFSID, no AFI, 256 blocks of 1 bytes.

Request AT+S

Response +UID=E00402000058913D
 OK

No memory-related capabilities reported.

5.2.11. Read Data Block

Read data block from tag memory. The block number must be within the range supported by the tag,
i.e. the within range returned by the “Get System Information” request (BC, if command is supported).
Returns the length of the data block, followed by the actual data in binary format (separated by a
colon).

ISO 15693 command: 20h (optional, supported by most tags with on-chip memory, including NXP i-
code SL-2, TI Tag-It HF-I)

Syntax

Request AT+R<block number>

Response +DATA <number of raw bytes>:<raw data bytes>
 OK

 ERROR tag reported an error or did not respond, or automatic scan
 mode (section 0) enabled

Example

Request AT+R0

Response +DATA 4:1234
 OK

Request AT+R88

Response ERROR (e.g. if address is out of range)

5.2.12. Write Data Block

Write data block to tag memory. The block number must be within the range supported by the tag, i.e.
within the range returned by the “Get System Information” request (BC, if command is supported). The
Length must match the size of a data block as returned in the BS parameter.

ISO 15693 command: 21 (write single block, optional)

Notice: There are two variants of the write single block command. The first variant (lower-case “w”) has

15 www.ubisys.de 

the option request flag clear, the second variant (upper-case “W”) has the option request flag set. It
depends on the tag, which command variant is supported. If you encounter errors or the memory block
content does not change, try the alternate option flag setting.

The data portion is in raw binary format, i.e. all values in the range 0-255 are allowed and written to the
tag without modification.

Syntax

Request AT+w<block number>, <size> without option flag
 <data>

Request AT+W<block number>, <size> with option flag
 <data>

Response OK

 ERROR tag reported an error or did not respond,
 or automatic scan mode (section 0) enabled

Examples

Request AT+w0,4 Writes 0x31 0x32 0x33 0x34 to
 1234 memory block 0, option flag clear

Response OK

Request AT+W23,4 Writes 0x54 0x65 0x78 0x74 to
 Text memory block 23, option flag set

Response OK

5.2.13. Lock Data Block

Lock data block in tag memory. Requires CDC/ACM firmware version 1.15 or above. The block
number must be within the range supported by the tag, i.e. the within range returned by the “Get
System Information” request (BC, if command is supported).

ISO 15693 command: 22h (optional, supported by most tags with on-chip memory, including NXP i-
code SL-2, TI Tag-It HF-I)

Notice: There are two variants of the lock block command. The first variant (lower-case “l”) has the
option request flag clear, the second variant (upper-case “L”) has the option request flag set. It
depends on the tag, which command variant is supported. If you encounter errors, try the alternate
option flag setting.

ATTENTION: Once a block has been locked, it cannot be unlocked any more. The contents of the
block will be permanently write-protected, i.e. subsequent write attempts to the same block will fail.
Other blocks are not affected.

16 www.ubisys.de 

Syntax

Request AT+l<block number> without option flag

Request AT+L<block number> with option flag

Response OK

 ERROR tag reported an error or did not respond, or automatic scan
 mode (section 0) enabled

Examples

Request AT+w0,4 Writes 0x31 0x32 0x33 0x34 to
 1234 memory block 0, option flag clear

Response OK

Request AT+l0 Permanently write-protects block 0

Response OK

17 www.ubisys.de 

5.2.14. Enable/Disable RF field

Syntax

Request AT+RF=<0|1>

Response OK

Example

Request AT+RF=0 Disable RF field

Response OK

Request AT+RF=1 Enable RF field

Response OK

5.2.15. Query RF field status

Syntax

Request AT+RF?

Response +RF=<0|1>
 OK

Example

Request AT+RF?

Response +RF=1
 OK

18 www.ubisys.de 

5.2.16. Automatic Scan Mode

Enable or disable the automatic scan mode. In the automatic scan mode, indications are created
automatically whenever a tag enters or leaves the field.

NOTICE: While in any of the scan modes, all other commands are not available. You need to quit scan
mode first, using AT+SCAN0.

Syntax

Request AT+SCAN<0|1|2> 0 disable automatic scan mode
 1 enable automatic scan mode
 2 enable automatic scan mode with extended
 scan indications (including RSSI)

Response OK

Indications SCAN:+UID=<uid> Tag found (new tag)
 SCAN:-UID=<uid> Tag lost
Mode 2 only: SCAN:+UID=<uid>,+RSSI=<main>/<aux> New tag or RSSI changed

Example

Request AT+SCAN1 Enable scan mode 1

Response OK

(from this point forward the reader only accepts AT+SCAN commands, in particular AT+SCAN0
to leave scan mode)

Indications SCAN:+UID=E00402000058913D Tag found
 SCAN:-UID=E00402000058913D Tag lost

Request AT+SCAN2 Enable scan mode 2

Response OK

(from this point forward the reader only accepts AT+SCAN commands, in particular AT+SCAN0
to leave scan mode)

Indications SCAN:+UID=E00402000058913D,RSSI=7/7 Tag found
 SCAN:+UID=E00402000058913D,RSSI=6/5 RSSI changed
 SCAN:-UID=E00402000058913D Tag lost

Request AT+SCAN0 Scan mode disabled

Response OK

(no indications generated anymore, you may use other commands again)

19 www.ubisys.de 

6. HID Firmware

The HID firmware acts as a USB HID keyboard and “types” the UID of a found tag by using virtual
keystrokes. As such, it is possible to use the reader in conjunction with any application, without
modifications.

6.1. Features

- No dedicated device driver required. All major operating systems (Microsoft Windows, Mac OS X,
Linux) ship with a driver, which will be used.

- Whenever a tag is identified, it automatically “types” the unique identification number as a
hexadecimal number, followed by return.

- Supported standards are ISO15693 and ISO14443A (integrated “multi-ISO” firmware and
dedicated firmware images for each standard)

- Extended firmware versions available that type the reader’s serial number in front of the tag’s UID.
This version allows you to know with which reader (i.e. where) the tag has been scanned.

- Custom configurations can be provided, which output tag memory contents or enter customer-
defined prolog/epilog key sequences. Please contact ubisys® support for details.

6.2. Operation

Whenever a tag is detected first, its UID is typed via emulated keystrokes. As long as the tag is in the
field, no further action is taken. If the tag leaves the field and enters it again, the UID is typed again.

20 www.ubisys.de 

7. CCID Firmware

With the CCID Firmware, the device appears to the host operating system as a single-slot Smart Card
Reader. If a tag is in the RF field of the reader, the reader reports an ”inserted card”. If there is no tag in
the field, this is reported as “card ejected”.

The device itself complies with the USB 2.0 CCID 1.1 specification (chip card interface device) to
allow the host computer to use a standard device driver, shipped with all major operating systems.

Applications use the operating-system-provided Smart Card API to access the reader and the tags. A
native Smart Card API is available on Microsoft Windows 2000 and above. The same API has been
adopted on MacOS X and Linux (pcsc-lite).

The reader emulates the T=1 APDU protocol exchange, allowing the host computer to exchange
commands and data with the reader and/or tag by sending and receiving APDUs.

For ISO 14443-4, which is based on APDUs natively, the reader establishes a transparent channel and
forwards APDUs between host and tag.

For memory cards (ISO15693), an APDU emulation layer is provided, which translates certain
predefined APDUs to appropriate ISO 15693 commands. Besides the APDU emulation layer, a
transparent mode can be enabled for ISO 15693, allowing the host application to communicate
directly with the tag. This feature allows customers to operate any tag that complies with the ISO
15693 standard. In particular, application software may use any manufacturer-specific “custom
command” codes.

A set of APDUs is defined to read the UID of the tag in the field and to configure the reader. These
APDUs will always be processed by the reader itself.

7.1. Driver Installation

On Microsoft Windows systems, the driver will be installed automatically. On Windows versions that
originally shipped without native CCID support, like Windows 2000 and Windows XP, you might need
to allow Windows Update to be searched for a suitable device driver. If you are using Windows 2000,
make sure that Service Pack 3 is installed.

Linux support requires that the packages pcsc-lite and libccid are installed.1

MacOS X Leopard, Snow Leopard and Lion also include versions of pcsc-lite.

Your ubisys product is automatically supported on systems with libccid version 1.4.5 as of October 11,
2011 and above. Depending on your OS type and version, the ubisys USB product and vendor ID
(0x19a6:0x0009) might not be included in shipped configurations yet and must be entered in a
configuration file belonging to PC/SC Lite in this case. Under MacOS X, the file is

/usr/libexec/SmartCardServices/drivers/ifd-ccid.bundle/Contents/Info.plist

1 The exact package names depend on the distribution used.

21 www.ubisys.de 

Under Linux, this file is usually

/etc/libccid_Info.plist

However, this is only a convention and might to apply to your particular Linux distribution.

The file is an Apple Property List in XML format and must be extended in the following way:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

 [....]

 <key>ifdVendorID</key>
 <array>
 [....]
| <string>0x19a6</string>
 </array>

 <key>ifdProductID</key>
 <array>
 [....]
| <string>0x0009</string>
 </array>

 <key>ifdFriendlyName</key>
 <array>
 [....]
| <string>ubisys 13.56 MHz RFID (CCID)</string>
 </array>

 [....]

</dict>
</plist>

Please restart the PC/SC service or reboot your machine after having modified the file. Also note that
you need elevated access rights to modify the file. Use sudo on MacOS and Linux to obtain elevated
access rights.

To verify correct operation on MacOS, open a terminal shell and enter pcsctest, which will run the
MUSCLE PC/SC Lite Test Program. Your ubisys reader should be listed. When prompted to enter the
reader number, enter the number next to “ubisys 13.56 MHz RFID (CCID)”. You may then present a tag
to the reader in order to see the tag’s ATR.

To verify correct operation on Linux, open a terminal shell and enter pcsc_scan. If this program is not
available, install the pcsc-tools package, first (e.g. “sudo apt-get install pcsc-tools” on ubuntu, “emerge
pcsc-tools” on gentoo). You might also use OpenSC for verification (“sudo apt-get install opensc”,
then “opensc-tool -l" to list the reader). Finally, it is also possible to run pcscd in foreground mode with
debugging output: “pcscd -f -d” in a terminal shell will also generate output when a tag is presented to
the reader.

For example, the following output was created on a PowerMac G5 running Gentoo Linux and 64-bit
PowerPC userland while an NXP i-code SL2 card was presented to the reader:

22 www.ubisys.de 

ubisys-macg5 ~ # pcsc_scan
PC/SC device scanner
V 1.4.18 (c) 2001-2011, Ludovic Rousseau <ludovic.rousseau@free.fr>
Compiled with PC/SC lite version: 1.7.2
Using reader plug'n play mechanism
Scanning present readers...
0: ubisys 13.56 MHz RFID (CCID) (00000002F2) 00 00

Fri Mar 23 16:37:23 2012
Reader 0: ubisys 13.56 MHz RFID (CCID) (00000002F2) 00 00
 Card state: Card inserted,
 ATR: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 13 00 35 00 00 00 00 4E

ATR: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 13 00 35 00 00 00 00 4E
+ TS = 3B --> Direct Convention
+ T0 = 8F, Y(1): 1000, K: 15 (historical bytes)
 TD(1) = 80 --> Y(i+1) = 1000, Protocol T = 0

 TD(2) = 01 --> Y(i+1) = 0000, Protocol T = 1

+ Historical bytes: 80 4F 0C A0 00 00 03 06 13 00 35 00 00 00 00
 Category indicator byte: 80 (compact TLV data object)
 Tag: 4, len: F (initial access data)
 Initial access data: 0C A0 00 00 03 06 13 00 35 00 00 00 00
+ TCK = 4E (correct checksum)

Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B 8F 80 01 80 4F 0C A0 00 00 03 06 13 00 35 00 00 00 00 4E
3B 8F 80 01 80 4F 0C A0 00 00 03 06 .. 00 35 00 00 00 00 ..
 i-Code SL2 (as per PCSC std part3)

7.2. Features and Tag Support

The CCID firmware supports the following standards:

Tag/Card Type UID Read/Write
(through built-in functions) Transparent access

ISO15693   

ISO14443-3 (Type A)  - -

ISO14443-4 (Type A)  - 

ISO15693 tags are accessible through the built-in function “Read Binary” and “Update Binary” for
straight-forward memory-card operations. For application-specific/non-standard commands, a
transparent mode is available.

ISO14443-3 (Type A) cards include the family of proprietary Philips/NXP Mifare Classic and Ultralight
cards and are currently supported in a very limited way only. Their presence is detected and the UID
can be read.

ISO14443-4 cards are fully fledged processor cards, which are accessible through a vendor-defined
protocol, which will be exchanged transparently and implemented in the host application. For example,
NXP Mifare DESFire cards belong to this class of tags. Libraries implementing the communication
protocols are available on request to qualified customers. Please contact support@ubisys.de for
details.

23 www.ubisys.de 

7.3. ATR Strings

A classic smart card sends an “answer to reset” through the smart card reader to the host operating
system upon completion of its reset sequence. This behaviour is emulated for the contactless system.

An ATR is generated according to the PC/SC Interoperability Specification for ICCs and Personal
Computer Systems, Part 3. Requirements for PC-Connected Interface, section 3.1.3.2.3.

Notice that ATR response strings do not contain the UID, i.e. cards to the same type produce the same
ATR. Use the Get UID command if you are interested in the tag’s UID.

7.3.1. ATR for ISO14443-4

The ATR for an ISO14443-4 card is built around the historical bytes, as received from the tag itself as
the answer to the RATS command. Up to 15 historical bytes are included in the ATR.

Byte Designation Value

0 Initial Header 3B

1 T0 8n
2 TD1 80
3 TD2 01

4..(3+n) Historical bytes T1..Tn+1
4+n TCK (Check byte)

7.3.2. ATR for Memory Cards (ISO15693, ISO14443-3 Type A)

Byte Designation Value

0 Initial Header 3B
1 T0 8F
2 TD1 80

3 TD2 01
4 Category indicator 80

5 Application identifier presence indicator 4F
6 Length 0C

7..11 Registered Application Provider (PC/SC) A0 00 00 03 06
12 Standard SS
13..14 Card name NN NN

15..18 Reserved 00 00 00 00
19 TCK (Check byte)

Standard

Standard SS

ISO14443-3 03
ISO15693 (-3) 0B

24 www.ubisys.de 

Card name

Card NN NN

Undefined/unknown 00 00

Mifare Standard 1K 00 01
Mifare Standard 4K 00 02

Mifare Ultra light 00 03
TI Tag It HF 00 12
NXP i-code SLI 00 14

NXP i-code SL2 00 35

7.4. APDU Format

The reader supports short APDUs according to ISO7816-4. Requests consist of a fixed header and a
variable payload of up to 255 bytes. Responses consist of a variable payload of up to 256 bytes,
followed by two status bytes.

7.4.1. Request APDU

Class
CLA

Instruction
INS

Parameter 1
P1

Parameter 2
P2

Lc Payload Le

1 byte 1 byte 1 byte 1 byte 1 byte variable 1 byte
Mandatory Optional

The first four fields (CLA, INS, P1, P2) are mandatory. Each of them is encoded in one byte.

The field Lc determines the payload length. The field is absent if the payload length is 0.

The field Le determines the maximum number of bytes expected in the response payload field. If no
payload is expected (0 bytes), this field is absent. 256 bytes of expected response payload is encoded
as 00h.

7.4.2. Response APDU

Payload SW1 SW2
variable 1 byte 1 byte
Optional Mandatory

The payload field is optional, the status bytes SW1 and SW1 are always present.

25 www.ubisys.de 

7.5. APDU Definitions

7.5.1. Tag Identification Commands

7.5.1.1. Get Data Command

Standard: PC/SC: Interoperability Specification for ICCs and Personal Computer Systems, Part 3,
Section 3.2.2.1.3.

Request

Command CLA INS P1 P2 Le

Get UID FFh CAh 00h 00h Expected length of UID

Get all historical bytes (ISO14443, excl. CRC) FFh CAh 00h 00h Expected length of historical bytes

Response

Data SW1 SW2

Response codes

SW1 SW2 Meaning

90h 00h The complete data is returned.

62h 82h The complete data is returned. End of data reached, i.e. Le is larger
than the length of the UID/historical bytes.

6Ch Wrong length requested, i.e. Le is less than the length of the
UID/historical bytes. SW2 indicates the correct length.

6Ah 81h Function not supported.

7.5.2. Configuration commands

Valid for: all standards, independent of active tag

7.5.2.1. Get Configuration

Request

CLA INS P1 P2 Le

FFh 33h 00h Configuration item ignored

Response

Configuration value SW1 SW2

26 www.ubisys.de 

Please note that Le is ignored. The stored value is returned without being truncated, independently of
Le.

Response codes

SW1 SW1 Meaning

90 00 Command executed successfully. The configuration item is delivered in the payload.

6B 00 Unsupported parameter P1-P2 combination.

The following configuration items are supported:

Configuration item [P2] Description Length Values

80h ISO15693 modulation depth 1 byte 00h – 10% modulation depth
01h – 100% modulation depth (OOK)

81h ISO15693 data-rate 1 byte
00h – low data rate
01h – high data rate

82h ISO15693 subcarrier setting 1 byte 00h – single subcarrier
01h – double subcarrier

8eh
ISO15693 default memory
configuration2 2 byte See table below

8fh Clear ISO15693 default memory
configuration (write-only)

0 -

The ISO15693 data rates are as following:

Data rate Single Subcarrier Dual Subcarrier

Low 6.62 kbits/s 6.67 kbits/s
High 26.48 kbits/s 26.69 kbits/s

Parameter layout for the ISO15693 default memory configuration

Number of blocks (minus 1) Block size in bytes (minus 1)

1 byte 1 byte

Both values are encoded as the actual value minus 1. This allows encoding values of 1 to 256 for both
fields.

If the default configuration is read back and no default configuration was previously set, an empty
response is returned.

2 This configuration is used if the tag does not support the ISO15693 “Get System Information” command,
which, among other information, returns the memory layout of the tag.

27 www.ubisys.de 

7.5.2.2. Set Configuration

Set a configuration option. Please not that only the current configuration is updated. The configuration
must be explicitly saved to non-volatile memory to be preserved permanently. Otherwise, the previously
saved configuration will be restored on the next system startup.

Request

CLA INS P1 P2 Lc Le

FFh 33h 01h Configuration item Length of the value to set Value to set ignored

Response

SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Configuration updated.

67h 00h Wrong length.
6Ah 81h Function not supported. The specified parameter value is invalid

6Bh 00h Unsupported parameter P1-P2 combination.

7.5.2.3. Save Configuration

Save the configuration to non-volatile memory. The current configuration will be preserved and
reloaded on the next system start-up.

Request

CLA INS P1 P2 Le

FFh 33h 80h 43h ignored

Response

SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully. The configuration was saved.

64h 00h Failed to save configuration to non-volatile memory.

28 www.ubisys.de 

29 www.ubisys.de 

7.5.3. Memory Card Access Commands

Standard: PC/SC: Interoperability Specification for ICCs and Personal Computer Systems, Part 3

Supported tags: ISO15693 memory tags. All memory tags are supported, which implement the “Read
Single Block” or “Write Single Block” commands, respectively.

The memory layout of the tag is automatically detected for tags which support the optional but widely
adopted “Get System Information” command. For tags not supporting this command, the (default)
memory layout, i.e. the number of blocks and the block size, must be configured manually (section
7.5.2) before the “Read Binary” and “Update Binary” commands can be used. This default memory
layout will only be used if the layout cannot be determined automatically.

7.5.3.1. Read Binary

This command reads data from the memory card.

Request

CLA INS P1 P2 Le

FFh B0h Address MSB Address LSB Amount of data to read (in bytes)

Response

Data SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully and the requested data is returned.

62h 82h EOF reached. The requested byte range exceeded the memory. Less data than requested is returned.
6Ah 81h Function not supported. No memory card available or reader has entered transparent mode.
6Ah 82h File not found. The requested start address exceeds the memory capacity.

7.5.3.2. Update Binary

Request

CLA INS P1 P2 Lc Payload

FFh D6h Address MSB Address LSB Amount of data to update (in bytes) Data to update (Lc bytes)

Response

SW1 SW2

30 www.ubisys.de 

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully and the data was written.

62h 82h EOF reached. The requested byte range exceeded the memory. Not all data could be written.
6Ah 81h Function not supported. No memory card available or reader has entered transparent mode.

6Ah 82h File not found. The requested start address exceeds the memory capacity.

7.5.4. Extended ISO15693 Information Commands

Request

CLA INS P1 P2 Le
FFh A2h see table ignored

P1 P2 Description Response Payload

00h 00h Get total capacity in bytes. 2 bytes
00h 01h Get number of blocks. 1 byte
00h 02h Get block size in bytes (1- 256 bytes). 2 bytes

01h 00h Get AFI (Application family identifier) 1 byte
01h 01h Get DFSID (Data storage format identifier) 1 byte

2-byte values are encoded in little-endian byte order.

Response

Payload SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully and the requested information is contained in the payload.

6Ah 82h File not found. The tag did not submit the requested parameter.
6Bh 00h Wrong parameter P1-P2 submitted.

31 www.ubisys.de 

7.5.5. ISO15693 Transparent mode

7.5.5.1. Enter Transparent Mode

This command enters the ISO15693 transparent mode, which allows exchanging arbitrary commands
between the tag and the reader. Two modes of operation are available. In the first mode, the reader
does not ‘ping’ the tag periodically and as such, is not able to detect if the tag is removed from the
reader’s field. This mode can be used if tags are set into a state where they do not answer (addressed)
inventory requests anymore or if a custom inventory sequence should be used.

In the second mode, the tag is pinged periodically by sending an addressed inventory request, which
must be answered as long as the tag is in the field and able to communicate. By this means, the
removal of the tag from the reader’s field can be detected.

Please note that the memory card access commands (section 7.5.3) are not available when using the
transparent mode. The extended ISO15693 information commands (section 7.5.4) might deliver
outdated information if the periodic ping was disabled and the tag was substituted or removed.

Request

Command CLA INS P1 P2
Ping mode

Le

Enter transparent mode. Do not ping tag while
in transparent mode.

FFh 27h 01h 00h ignored

Enter transparent mode. Ping tag periodically. FFh 27h 01h 01h ignored

Response

SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully. Transparent mode activated.

6Ah 81h Function not supported. Either, transparent mode is already activated or a non-ISO15693 tag is in the
field.

7.5.5.2. Leave Transparent Mode

Disables the transparent mode and returns to normal operation.

Request

CLA INS P1 P2 Le

FFh 27h 02h 00h ignored

32 www.ubisys.de 

Response

SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully. Normal mode reactivated.
6Ah 91h Function not supported. Transparent mode has not been not activated.

7.5.5.3. Transparent Data Exchange

This command exchanges data transparently with the tag. The reader does not interpret the data,
simply forwards it to the tag and captures the response.

Two variants exist. The first variant is suitable for most requests. It transmits the request frame and
immediately captures the response frame. The second variant transmits the request and sends a “Next
Slot” command (end of frame marker) to the tag, approx. 15 ms after the request frame was sent.
Afterwards, the response is captured.

Request

Command CLA INS P1 P2 Lc Payload Le

Exchange transparent data. FFh 27h 03h 00h

Payload
length

Request
data

Maximum
response
length

Exchange transparent data. Send a “Next Slot”
command approx. 15 ms after the frame is
transmitted. The response will be captured
after the “Next Slot” command was sent.

FFh 27h 03h 01h

Response

Response SW1 SW2

Response codes

SW1 SW1 Meaning

90h 00h Command executed successfully. The response is delivered in the response payload field.

62h 82h
Command executed successfully. The response is delivered in the response payload field. The response
length was shorter than the specified Le.

6Ch FFh Wrong length, i.e. response buffer overflow. The submitted response length Le was too short.

33 www.ubisys.de 

8. Firmware update

The firmware contained in the device can be updated by using RFID Control Center. This allows
programming a new firmware image into the device, i.e. transforming e.g. a CDC device into a CCID
device or updating to a more recent firmware version. Firmware updates may be conducted on 32-bit
and 64-bit Windows (requires RFID Control Center version 1.4 or above). Qualified customers
needing firmware upgrade ability on other platforms should contact the ubisys RFID support team.

The ubisys RFID Control Center software is available at http://www.ubisys.de/rfid/download-
software.html free of charge and includes an online help, which explains the necessary steps. The
package also includes common firmware images. Notice that customer-specific firmware images are
typically delivered via e-mail.

Step 1a (applies to HID devices): To initiate firmware update of a device currently acting as a keyboard
(HID firmware), click on Update HID, when the device is attached to your PC. If you have more than
one RFID device in HID mode, click on the drop-down arrow to see the list of all devices and hover
over an entry to see the serial number.

Figure 1: Initiating Firmware Update of HID Devices (Step 1a)

34 www.ubisys.de 

35 www.ubisys.de 

Figure 2: Initiating Firmware Update of CDC and CCID Devices (Step 1b)

Step 1b (applies to CDC/CCID devices): If you are planning to update a CDC or CCID device, first
use the connect command to click on the device, which you want to update. Then, click on the Update
Firmware command.

36 www.ubisys.de 

Figure 3: Validating Presence of a Tag in CCID Mode (Step 1b – CCID only)

Notice (applies to CCID devices): In case of CCID devices, there must be a tag in reading range when
conducting the firmware update. You can verify this by observing the command log when presenting a
card to the reader. The card ATR will be printed for any card that enters reading range. Notice that the
ATR does not comprise UID information, i.e. different cards of the same type will create the same ATR.
You have to use the Get UID command in your applications to obtain the UID.

37 www.ubisys.de 

Figure 4: Acknowledging the Warning Notice (Step 2)

Step 2: Acknowledge the warning message.

38 www.ubisys.de 

Figure 5: Selecting the Desired Firmware Image

Step 3: Select the new firmware image. All common firmware images can be found in the installation
folder of RFID Control Center (typically C:\Program Files\ubisys technologies\RFID Control\Firmware).
Make sure that the USB connection is reliable while programming the firmware. Do not turn off
intermediate hubs. If you are using a battery powered device for firmware programming, make sure the
battery is fully charged and use the power cable if possible. Click Next to start programming.

39 www.ubisys.de 

Figure 6: Firmware Update in Progress

Step 4: Wait until the flash programming sequence has successfully completed.

Once the firmware update has successfully completed, the device appears either as HID Keyboard,
COM port, or smart card reader – according to its desired USB device role.

Notice: If the update fails for any reason, you might be able to resume the update using the “Resume
Update” command. However, this should normally not be necessary. If you cannot use the Resume
Update command successfully, detach the device from USB and reattach it. If the Resume Update
Button does not appear after reattaching the device, it must be returned to the factory.

40 www.ubisys.de 

9. ubisys RFID/Smart Card API

ubisys provides a C++ RFID/Smart Card API library, which provides an easy and convenient way of
dealing with the Smart Card API. It can be used on Windows, MacOS X and Linux, as all operating
systems use the same underlying Smart Card API.

9.1. Overview

9.2. Basic RFID/Smart Card API

The classes CSmartCardContext and CSmartCard encapsulate handles to opaque Smart Card API
objects, which are established in the constructors and released in the destructors.

Copying of and assigning to class instances is not supported. To enforce correct usage, the classes
provide private copy constructors and assignment operators (operator=), to prevent objects from being
copied in inappropriate ways. Class instances shall always be passed by reference.

The same applies to CSmartCardTransaction, which does not encapsulate a handle, but manipulates
the state of an object associated with a handle.

9.2.1. CSmartCardContext

Manages automatic context establishment and release and provides utility functions.

9.2.1.1. Local Type Definitions

An alias tstring is defined for std::basic_string<TCHAR>. Similar to TCHAR, for non-Unicode builds,
tstring will map to std::string, for Unicode builds, it will map to std::wstring.

 typedef std::basic_string<TCHAR> tstring;

9.2.1.2. Constructor

 explicit CSmartCardContext(const DWORD dwScope = SCARD_SCOPE_USER);

The constructor establishes the context by calling SCardEstablishContext(). The default scope is
SCARD_SCOPE_USER, which can be overridden.

The destructor will release the context by calling SCardReleaseContext().

9.2.1.3. Methods

 SCARDCONTEXT GetHandle()

The method GetHandle() obtains the underlying handle and is used to directly call API Smart Card

41 www.ubisys.de 

functions which require a context handle.

 std::list<tstring> EnumerateReaders() const

EnumerateReaders() returns a list of readers known to the system.

 DWORD GetReaderStatus(const tstring &reader);

Obtains the current status for the specified reader. The result is a bitmask of SCARD_STATE_XXX
constants, e.g. SCARD_STATE_PRESENT indicates that there is a card in the reader.

The method calls SCardGetStatusChange() internally and returns the member dwEventState of the
SCARD_READERSTATE struct.

 vector<unsigned char> GetATRString(const tstring &reader);

Obtains the ATR string (Answer to Reset) generated for the tag in field (if any). Returns an empty
vector if no tag is in the field.

9.2.2. CSmartCard

9.2.2.1. Local Type Definitions

The type tstring is defined locally (see CSmartCardContext):

 typedef std::basic_string<TCHAR> tstring;

9.2.2.2. Constructor

 CSmartCard(CSmartCardContext &context, const tstring &strReader,
 const DWORD dwShareMode = SCARD_SHARE_SHARED,
 const DWORD dwPrefProtocol = SCARD_PROTOCOL_T0 | SCARD_PROTOCOL_T1,
 const DWORD dwDisposition = SCARD_LEAVE_CARD);

Constructs a CSmartCard instance which forms the logical connection to a Smart Card/RFID Tag in
the specified reader.

Please note that the connection can only be established once the tag is in the field of the reader
(analogous to a card being inserted into the reader). The provided context must be valid during the
overall lifetime of the class instance, i.e. it must not be deleted/destroyed before the instance of
CSmartCard is destroyed/deleted.

Internally calls SCardConnect(). The destructor will call SCardDisconnect() with the parameter
dwDisposition to release the connection.

The default parameters for dwShareMode, dwPrefProtocol and dwDisposition can be overridden, if
necessary.

42 www.ubisys.de 

9.2.2.3. Methods

 SCARDHANDLE GetHandle();

Obtains a handle to be used directly with the Smart Card API functions.

 DWORD GetProtocol();

Obtains the negotiated protocol.

 void ExchangeAPDU(const std::vector<unsigned char> &apduOut,
 std::vector<unsigned char> &apduIn);

Exchange APDUs with the tag. The APDU to be sent and received is passed as a vector. The
APDU to be received (adpuIn) shall have a capacity matching the expected response, i.e. by calling
apduIn.reserve(). If no memory was reserved, the maximum response APDU size (for a short APDU)
will be allocated.

 size_t ExchangeAPDU(const unsigned char *const pbOut, const size_t cbOut,
 unsigned char* const pbIn, const size_t nCapacityIn);

Exchange APDUs with the tag. The APDU to be sent and received is passed as void pointers
together with the corresponding size parameters. The number of bytes actually received is returned.

 void BeginTransaction();

Begin a transaction. Block other application from accessing the tag simultaneously, e.g. when using
authentication functions, which require a strict order. The use of the CSmartCardTransaction class
is highly recommended.

 void EndTransaction(const DWORD dwDisposition = SCARD_LEAVE_CARD);

End a previously started transaction.

9.2.3. CSmartCardTransaction

Start a transaction, which spans the current scope. Calls CSmartCard::BeginTransaction() upon
construction and CSmartCard::EndTransaction upon destruction.

This class provides a convenient and exception-safe way to handle transactions.

9.2.4. CSmartCardStatusReceiver

Provides a base class type for a status event receiver. An application must derive from this class to
receive events in conjunction with CSmartCardStatusListener.

43 www.ubisys.de 

9.2.4.1. Local Type Definitions

The type tstring is defined locally (see CSmartCardContext):

 typedef std::basic_string<TCHAR> tstring;

9.2.4.2. Constructor

No constructor is explicitly declared. A default constructor will be generated.

9.2.4.3. Destructor

A virtual destructor is provided, in case an application might need it.

9.2.4.4. Methods

 virtual void OnReaderAdded(const tstring &strReader);

This method will be called when a new reader is added to the system.

 virtual void OnReaderRemoved(const tstring &strReader);

This method will be called when a reader is removed from the system.

 virtual void OnReaderEvent(const tstring &strReader,
 const DWORD dwCurrentState, const DWORD dwChanges,
 const std::vector<unsigned char>& vbATR);

This method will be called for events on a specific card/tag. dwCurrentState indicates the current
state and consists of SCARD_STATE_XXX flags. dwChanges encodes the same flags, but only
indicates changes compared to the previous call. The ATR string (if available) is passed as a
vector<unsigned char>.

Please note that if a tag is lost and found again between two calls, this does not result in the
SCARD_STATE_PRESENT flag being set in the dwChanges parameter. This change will only
occur if the function got called at least once with SCARD_STATE_PRESENT cleared and again
with SCARD_STATE_PRESENT.

9.2.5. CSmartCardStatusListener

Provides an easy way to build an event-driven application which automatically reacts to tag/card
events, e.g. availability/non-availability of tags (inserted/ejected cards), and the addition and removal of
reader devices.

44 www.ubisys.de 

9.2.5.1. Constructor

 CSmartCardStatusListener(CSmartCardContext &context);

Constructs the instance in the given context. Please note that the context must be valid during the
overall lifetime of this instance.

9.2.5.2. Methods

 bool GetStatusChange(CSmartCardStatusReceiver ¬ify, DWORD dwTimepout = INFINITE);

Get status changes. Waits until a status change has occurred or the specified timeout has elapsed.

Detected Events will be passed to the relevant methods of the specified class instance (derived from
CSmartCardStatusReceiver).

9.2.6. CSmartCardExceptionHelper

The API uses exceptions to propagate unexpected error conditions, e.g. transmission problems.

It is left at the user’s discretion, which exception class should be thrown. Two default implementations
are provided. One class is derived from the C++ standard library class std::exception, whereas the
other one is derived from the MFC CException class and can be used in MFC programs.

Please note that MFC exceptions must be caught by pointer, whereas ordinary C++-exceptions are
usually caught by (const-) reference (or less-optimal by value).

CSmartCardExceptionHelper is a helper class, which provides static methods to throw an exception as
well as methods to translate error codes returned from the Smart Card API.

9.2.6.1. Local Definitions

A enum is defined, enumerating the most common errors. Translation from error codes returned by the
Smart Card API to this enum is done internally by the (private) static method MapErrorCause().

 enum {
 errorUnknown, // Unknown error, no mapping exists
 errorNoCard, // No card in reader
 errorTransmission, // Transmission failed
 errorInvalidParameter, // Invalid Parameter
 errorUnknownReader, // Reader not known
 errorTimeout, // A timeout occurred
 errorSharing, // A sharing violation occurred
 errorProtocolMismatch, // Protocol mismatch
 errorUnavailable // Reader or card/tag not available
};

A sharing violation occurs if two applications try to open the same reader with incompatible settings,
e.g. another application opened the reader in exclusive mode.

45 www.ubisys.de 

9.2.6.2. Methods

 static const char * GetErrorCauseStr(const unsigned int nErrorCause);

Translates the enumerated error codes (c.f. 9.2.6.1) to a user-readable string.

 static unsigned int MapErrorCause(const long lRet);

Translates the most common error codes returned by the Smart Card API to the enumerated error
codes (c.f. 9.2.6.1)

 static void Throw(long lRet, const std::string &strOp = "");

This function is invoked internally to throw an exception. strOp determines the operation (e.g. API
call) which failed. lRet specifies the return value of the API function. Its value is internally translated
to one of the enumerated error codes. This information is passed to the function ThrowImpl().

static void ThrowImpl(const unsigned int nErrorCause, long lRet,
 const std::string &strOp);

User-/application-defined function, which actually throws the exception and eventually determines
the type of exception to throw.

Two default implementations are provided (c.f. 9.2.7).

9.2.7. Pre-defined Exception Classes

SCardException.h and SCardException.cpp contain two pre-defined exception classes and the
corresponding implementation of CSmartCardExceptionHelper::ThrowImpl().

Per default, the class CSmartCardExceptionStd will be declared and defined, which derives from
std::exception. CSmartCardExceptionHelper::ThrowImpl() throws the exception by value.

By defining the pre-processor macro SCARD_USE_MFC_EXCEPTIONS, the alternative class
CSmartCardExceptionMFC is declared and defined. The method CSmartCardExceptionHelper::
ThrowImpl() will throw allocate the exception on the heap and construct it by calling the new operator.
A pointer to the exception will be thrown.

9.2.7.1. Common Data Fields

Both predefined exception classes contain the following public const data fields:

 const unsigned int m_nErrorCause;

Contains the cause of the error, encoded by using the enum defined in
CSmartCardExceptionHelper.

46 www.ubisys.de 

 const long m_lReturn;

Contains the unmodified return value of the API function that failed.

 const std::string m_strOperation;

Contains the name of the operation (e.g. API function) which failed.

9.2.7.2. Virtual Methods Overrides

The implementation based on the C++ class std::exception overrides the what() method:

 virtual const char *what() const;

The method returns a plain “CSmartCardException”, without the “std” prefix.

The MFC-based implementation overrides the GetErrorMessage() method:

 virtual BOOL GetErrorMessage(LPTSTR lpszError, UINT nMaxError,

 PUNIT pnHelpContext = NULL);

The method returns a formatted error message, including the operation which failed, the API error code
and the translated, human-readable error cause.

47 www.ubisys.de 

10. Physical Dimensions

Figure 7: USB Stick with on-board PCB antenna

Figure 8: USB Stick with on-board PCB antenna (OEM, without case)

48 www.ubisys.de 

Figure 9: USB Stick with SMA Connector for External Antenna

Figure 10: USB Stick with SMA Connector (OEM, without case)

49 www.ubisys.de 

Figure 11: Desktop Reader Pro Case (USB Micro-B Socket)

Figure 12: Desktop Reader Case (USB B Socket)

50 www.ubisys.de 

11. Ordering Information

The following tables list the reader variants available. Use the specified order codes for your orders.
Please contact ubisys support if you require any customization.

11.1. USB Stick

Antenna Case Firmware variant Product Number Order Code

On-board PCB
antenna

Black

CDC U0201-010120-01 7030

HID U0201-010120-02 7047

CCID U0201-010120-03 7054

Grey

CDC U0201-010220-01 7061

HID U0201-010220-02 7078

CCID U0201-010220-03 7085

transparent

CDC U0201-010320-01 7092

HID U0201-010320-02 7108

CCID U0201-010320-03 7115

OEM
(without case)

CDC U0201-010020-01 7009

HID U0201-010020-02 7016

CCID U0201-010020-03 7023

SMA-Connector

Black

CDC U0201-020120-01 7153

HID U0201-020120-02 7160

CCID U0201-020120-03 7177

Grey

CDC U0201-020220-01 7184

HID U0201-020220-02 7191

CCID U0201-020220-03 7207

transparent

CDC U0201-020320-01 7214

HID U0201-020320-02 7221

CCID U0201-020320-03 7238

OEM
(without case)

CDC U0201-020020-01 7122

HID U0201-020020-02 7139

CCID U0201-020020-03 7146

11.2. Desktop Pro

Case Firmware variant Product Number Order Code

Transparent & Black

CDC U0209-010110-01 7405

HID U0209-010110-02 7412

CCID U0209-010110-03 7429

51 www.ubisys.de 

11.3. Desktop

Case Firmware variant Product Number Order Code

Light Grey
(RAL 7035)

CDC U0202-010210-01 7245

HID U0202-010210-02 7252

CCID U0202-010210-03 7269

52 www.ubisys.de 

12. Declaration of Conformity

We – ubisys technologies GmbH, Am Wehrhahn 45, 40211 Düsseldorf, Germany – declare under our
sole responsibility that all orderable RFID products with product numbers and order codes as detailed
in section 11 under the trade name “ubisys” to which this declaration relates are in conformity with the
following directives and standards:

Directive/Standard Description/Scope

2014/53/EU Radio Equipment Directive (RED)

2014/30/EU Electromagnetic Compatibility Directive (EMC)

2014/35/EU Low Voltage Directive (LVD)

2012/19/EG Waste Electrical and Electronic Equipment Directive (WEEE)

2011/65/EU Restriction of Hazardous Substances Directive (RoHS)

EN 300 330 Spectrum

EN 301 489 EMC

EN 60950 Safety

EN 50364 Exposition

ISO 14443 RFID Proximity Cards

ISO 15693 RFID Vicinity Cards

ISO 18000-3 RFID Item Management

Düsseldorf, Germany April 30, 2016

Place of issue Date of issue

Dr.-Ing. Arasch Honarbacht Managing Director, Head of Research & Development

Full name of Authorized Signatory Title of Authorized Signatory

Signature Seal



53 www.ubisys.de 

13. Document revision history

Revision Date Remarks
1.0 07/01/2009 Initial Version (CDC and HID firmware)
2.0 26/04/2010 Added CCID firmware documentation
2.1 18/04/2011 Updated ordering information. Initial public release
2.2 30/09/2011 CDC Firmware section contained outdated information

on availability of 64-bit Windows drivers
2.3 25/10/2011 Updated list of supported tags
2.4 02/12/2011 Updated feature overview
2.5 15/12/2011 Updated CCID Get Data request documentation
2.6 20/01/2012 Corrected Supported TAGs section
2.7 23/03/2012 Updated PC/SC Lite & libccid information
2.8 10/04/2012 Added LED control command information. Minor

editorial changes, corrected documentation for write
single block command (CDC/ACM)

3.0 06/07/2012 Added Desktop Reader Pro dimensions and ordering
information

3.1 19/07/2012 Added buzzer control command information
3.2 28/08/2012 RFID Control Center 1.4 supports firmware updates on

32- and 64-bit Windows platforms. Integrated
Declaration of Conformity for European Union into
manual

3.3 12/09/2012 Corrected compatibility matrix for Legic transponders
3.4 02/07/2014 Updated tag compatibility matrix. Added lock block

command documentation. Fixed an error in the
documentation for transparent APDU exchange with
ISO 15693 tags using the firmware CCID (the P1
parameter was documented incorrectly).

3.5 03/21/2016 Updated declaration of conformity
3.6 04/30/2016 Updated declaration of conformity

54 www.ubisys.de 

14. Contact

UBISYS TECHNOLOGIES GMBH
HARDWARE AND SOFTWARE DESIGN
ENGINEERING AND CONSULTING

AM WEHRHAHN 45
40211 DÜSSELDORF
GERMANY

T: +49 (211) 54 21 55 - 00
F: +49 (211) 54 21 55 - 99

www.ubisys.de
info@ubisys.de
support@ubisys.de

