AUTOMATIONS DOCUMENTATION
REFERENCE MANUAL

ubisys.

Table of Contents

I: Automation template

1. Overview

2. Automations overview

3. Guidelines for automation template bundle

4. bundle-info.json
4.1.id
4.2. category
4.3. keywords
4.4, version
4.5. publisher
4.6. publisher-id
4.7. name
4.8. description
4.9. bundle-html

4.10. item-description-html

4.11. bundle-pdf
4.12. logic

4.13. configuration-schema

5. bundle-html

6. Automation JavaScript file

7. Configuration schema
7.1. Attributes
7.1.1. $schema
7.1.2. $id

7.1.3. ubisys::presentation::template::title

7.1.4. ubisys::presentation::template::icon-pdf

7.1.4.1. type
7.1.5. properties

7.1.6. Data type and supporting attributes

7.1.6.1. type
7.1.6.2. default

7.1.6.3. minimum

7.1.6.4.
7.1.6.5.
7.1.6.6.
7.1.6.7.

maximum
minltems
maxltems

ubisys::type

7.1.7. name

7.1.8. description

7.1.9. ubisys::short-description

7.1.10. ubisys::presentation::order

0 0 00 0 0O N N N NN o o o o NN =

B N T e e QS WSt WS Wl St U U W Ut W O Ut U U G-
© 00 0 0O N N N N N Noo oo o o oo oo N = ©

7.1.11. ubisys:
7.1.12. ubisys:
7.1.13. ubisys:
7.1.14. ubisys:
7.1.15. ubisys:
7.1.16. ubisys:

:presentation::placeholder
:presentation::key
:presentation::mandatory
:presentation::visible
:value::cross-reference

:application-filter

7.1.16.1. qualifying-device-types

7.1.16.2. disqualifying-device-types

7.1.16.3. qualifying-clusters

7.1.16.4. include-groups

7.1.17. uniqueltems

7.1.18. ubisys:
7.1.19. ubisys:

7.1.20. items

7.1.21. ubisys:

7.2. Examples

:value::full-scale

:value::stepping

:value::options

7.2.1. Properties examples using type
7.2.1.1. String attribute
7.2.1.2. Array attribute
7.2.1.3. Integer attribute
7.2.1.4. Number attribute
7.2.1.5. Boolean attribute
7.2.1.6. Object attribute

7.2.2. Properties examples using ubisys::type

7.2.2.1. zigbee-application-instance attribute
7.2.2.2. time-of-day attribute

7.2.2.3. color-temperature-k attribute

7.2.2.4. percentage attribute

7.2.2.5. cross-reference attribute
7.2.2.6. lightlevel:lux attribute

7.2.3. "Motion-based lighting control system" use case

8. Adding support for other languages

9. index.plist

10. Parsed JSON file

11. Troubleshooting_errors

12. Integrated icons

II: Javascript
13. Features

14. Fundamentals

14.1. Naming conventions

14.1.1. Class

14.1.2. Interface

19
20
20
20
20
20
21
21
21
21
21
292
292
292
23
23
23
23
24
24
25
25
25
26
26
26
27
27
27
27
29
34
36
37
38
40
78
79
80
80
80
80

14.1.3. Inheritance 81

14.2. Firmware version references 81
14.3. APls/Interfaces 81
14.4. Zigbee and Zigbee Cluster Library (ZCL) Basics 81
15. Programming Interface 83
15.1. Globals and Builtins 83
15.2. Timer API 83
15.2.1. Exported functions 83
15.2.1.1. createTimer() 83
15.2.1.2. createPeriodicTimer() 84
15.2.1.3. createDayTimer() 84
15.2.2. Interfaces and Classes 85
15.2.2.1. Timer 85
15.8. Zigbee API 86
15.3.1. Exported functions 86
15.3.1.1. onReady() 86
15.3.1.2. onUpdate() 86
15.3.1.3. getDevice () 87
15.3.1.4. getGroupByName() 87
15.3.1.5. getGroupByld() 87
15.3.1.6. getGroupByAddress() 88
15.3.1.7. getScene() 88
15.3.1.8. getSceneByld() 88
15.3.1.9. getScenes() 89
15.3.1.10. lookup() 89
15.8.2. Interfaces and classes 90
15.3.2.1. Device 90
15.3.2.2. Application 91
15.3.2.3. Group 93
15.8.2.4. Scene 94
15.3.2.5. Cluster 95
15.3.2.6. OnOffCluster 99
15.8.2.7. LevelControlCluster 100
15.3.2.8. WindowCoveringCluster 102
15.3.2.9. ClientCluster 105
15.3.2.10. Attribute 107
15.3.2.11. ZigbeeStatus 108
15.3.3. Cached Attributes 108
15.3.3.1. Power Configuration Cluster (0x0001) 108
15.3.3.2. On/Off Cluster (0x0006) 109
15.3.3.3. On/Off Switch Configuration (0x0007) 109

15.3.3.4. Level Control Cluster (0x0008) 109

15.3.3.5. OTA Upgrade (0x0019) 109

15.83.3.6. Poll Control (0x0020) 110
15.3.3.7. Door Lock (0x0101) 111
15.3.3.8. Window Covering Cluster (0x0102) 111
15.3.3.9. Thermostat (0x0201) 112
15.3.3.10. Fan Control (0x0202) 113
15.3.3.11. Color Control Cluster (0x0300) 113
15.3.3.12. Ballast Configuration (0x0301) 114
15.3.3.13. llluminance Measurement (0x0400) 114
15.3.3.14. llluminance Level Sensing (0x0401) 114
15.3.3.15. Temperature Measurement (0x402) 114
15.3.3.16. Relative Humidity Measurement (x0405) 114
15.3.3.17. Occupancy Sensing (0x0406) 114
15.3.3.18. Leaf Wetness (0x0407) 115
15.3.3.19. Soil Moisture (0x0408) 115
15.3.3.20. IAS Zone Cluster (0x0500) 115
15.3.3.21. IAS WD Cluster (0x0502) 115
15.3.3.22. Metering (0x0702) 115
15.3.3.23. Device Setup (0xfc00) 116
15.3.3.24. Dimmer Setup (0xfc01) 116
15.4. Buffer Support 116
15.5. Push Notification API 117
15.6. Global variables 117
15.7. HTTP Client API 119
15.7.1. Exported functions 119
15.7.2. Classes 119
156.7.2.1. HttpRequest 119
15.7.2.2. FormData 123
15.7.3. HitpResponse 123
15.8. HTTP Server API 123
15.8.1. Exported functions 123
15.8.2. Classes 124
156.8.2.1. HttpRequest 124

16. Examples 126
16.1. Toggle a light every 5s seconds 126
16.2. Control a light via a motion detector 126
16.3. Write the StartUpOnOff attribute in the On/Off cluster 127
16.4. Control a light via an HTTP handler 128
16.5. Send an HTTP request on button press 128
17. Revision History 130

18. Contact 131

I: Automation template

www.ubisys.de UblS\JS

1. Overview

Reproduction and copies (also in extracts) only with the consent of ubisys technologies GmbH. This
document may contain errors in content. However, it will be revised regularly and corrected
accordingly in the next edition. We accept no liability for errors in content. Changes in the sense of
technical progress can be made without prior notice.

Copyright© 2020-2021 ubisys technologies GmbH, Diisseldorf, Germany.
All rights reserved.

’ www.ubisys.de UblS\JS

2. Automations overview

Automations is one of the key features in any smart loT application. With ubisys products, one has a
variety of ways to define the automations and use their loT products flexibly. Utilizing user-defined
scripts and templates, is one of the smart way to define such automations. A developer or an end user
with a basic knowledge of JavaScript and JavaScript Object Notation (JSON) can create such
automations and use them with the ubisys app. These automations are template based hence they
can be easily configured, and yet they are enormously versatile and sophisticated. A typical example
of such an automation is the regulation of luminaires based on motion sensors and naturally incident
daylight. Developers can define filter properties to group devices that support motion sensing and
another group for luminaires. Similarly, one can also define other properties like threshold values and
can expose it to the user interface to make it configurable in runtime. Once the properties are defined,
the developer can then create a JavaScript file to implement the actual logic of the automation script
which completes this template.

Once the template is ready, it is parsed through the ubisys app and a JSON message is created,
which is then directly forwarded to the ubisys gateway without any cloud round-trips. With the help of
such templates, a user interface for configuring all automation parameters can be created for the end-
user significantly helping to hide the complexity of a script language. Such templates are then made
available in form of bundle file in the .jsb format, which stands for "JavaScript bundle". Apart from the
ubisys smart home app (currently iOS, Android will follow), these automations can also be deployed
via custom cloud integration (push automation template from a cloud service).

This document is a developer guide on how to create customizable automation templates. In the first
chapter, the overall bundle structure and the supporting files are explained, followed by supported
attributes required to configure the automation. Lastly, a use case of a motion based lighting control
system is discussed. The reader of this document is expected to have a basic knowledge of JSON
and JavaScript programming.

I Parameter Descriptions

Device Footprints

Logic Configuration
° Js - O

Schema

Figure 1. Automation template overview

The complete template can be divided into two sections. One that describes the logic which is the
backbone of this template and the other one for configurations. To define the automation logic,
JavaScript language is used. There must be at least one .js file in the automation template bundle

www.ubisys.de UblS\JS

describing the expected logical actions. Different device footprints and parameters must be defined
and configured by means of configuration schema files. For this purpose, the JSON format is used.
Such a configuration.schema.json file includes system-wide parameters, automation properties that
can also be made available to configure via the user interface. Thus, the logic along with the
configuration schema contributes to the automation template. The details of these files are discussed
in following sections.

www.ubisys.de UblS\JS

3. Guidelines for automation template bundle

This chapter provides guidelines on creating a new automation template and running it in the ubisys
iOS application. Developers are recommended to follow these steps and add further customization
based on requirements.

1

10.
11.

. Define the idea behind the automation and note down the trigger events and expected logical

operations to execute the automation.

. Create a JSON file named bundle-info.json and add basic details of the automation template. The

name of the files defined in further steps should be exactly the same as described in this file. In
depth details are explained in Chapter 4.

. Add an icon image for the automation in pdf format. In depth details are explained in Section 4.11

. Create an HTML file to describe the logic behind the automation. Developers can also add

images, charts to make it more descriptive. See Chapter 5 for more details.

. Create a JavaScript file to define the core logic of the automation. Define the functions to perform

the logical operations based on the trigger events as defined in step one. Declare the properties
which can be exposed to the user interface for further configuration. Developers can also add
additional JavaScript files based on requirements. More details are available in Chapter 6.

. Create a configuration schema JSON file to define these properties and their respective

parameters. Developers can use icons supported by the ubisys app or they can also add
customized icons. More details are available in Chapter 7.

. To add support for additional languages (if required), add respective patch files as described in

Chapter 8.

. Once all files are ready, zip the files and rename the zipped file same as "id" in bundle-info.json

and extension as .jsb

. Create a file named index.plist that includes basic details of the automation bundle file. More

details are available in Chapter 9
Upload the bundled and plist file on the web-server and note down the link.

To test/run the automation, provide this link in the third-party repository section of the automations
tab in the ubisys app and test the automation.

The minimal structure of the automation bundle should follow the structure as shown in the table
below.

Table 1. Files in automation template bundle

File Requirement
bundle-info.json Mandatory
bundle-pdf (bundle_image_icon.pdf) Mandatory
bundle-html (bundle_information.html) Mandatory
logic (automation_script.js) Mandatory
configuration-schema (configuration.schema.json) Mandatory

... further automation files (scripts, icons, etc.) Optional

An example explaining these steps is available at Section 7.2.3.

www.ubisys.de UblS\JS

4. bundle-info.json

The information of the complete automation bundle is summarized in the bundle-info.json file. Details
such as name, version number, description etc. are stored here, as well as defining logic script files,
description files, icons, etc. Each of these attributes have a unique significance and must be defined
based on the requirements from the automation template. The overall structure must be in JSON
format and the language used must be English. To add support for other languages, the developer
needs to create a patch file for every supported language, which includes equivalent text. See
Chapter 8 for more details. The typical structure of the bundle-info file is as shown below.

1 {

2 "id": "lighting.example",

3 "category": "lighting",

4 "keywords": ["illuminance", "sensors', "HCL"],

5 "version'": "1.0.0",

6 "publisher'": "Organisation name",

7 "publisher-id": "organisation.id",

8 "name": "Lighting Control Script",

9 "description": "Lighting control script for home automation",
10 "bundle-html": "bundle_ information.html",
11 "item-description-html": "item description.html",
12 "bundle-pdf": "bundle_image_ icon.pdf",
13 "logie": "automation_ script.js",
14 "configuration-schema": '"configuration.schema.json"
15 }

The details of each of these attributes are discussed below.

41.id
Mandatory

Id is the unique identifier of the automation template with which the developer can distinguish
different templates from another. The data type must be string and the contents cannot be empty.

1 "id": "lighting.example"

4.2, category

Mandatory

Category is the domain identifier of the given template for example, "lighting", "energy", "lifestyle" and
must be of string data type. in the current ubisys application, there are no any restrictions on selecting
the category, but the developer is recommended to use the best suited phrase for their automation
template.

0 As of now, the ubisys application does not support filtering templates using
category.

1 "category": "lighting"

www.ubisys.de UblS\JS

4.3. keywords
Mandatory

A set of keywords which help users find a suitable template using a keyword search. It must be
defined as an array of strings.

0 As of now, the ubisys application does not support keyword search functionality.
1 "keywords": ["illuminance", '"sensors", "HCL"]
4.4. version
Mandatory

Version is used as an identifier that can be used to show the current version of your automation
template, that is also used to display information about the template on the user interface, see
[Automation_template_main_Ul] for more details.

1 "version'": "1.0.0"

4.5. publisher
Optional

Name of the owner of the automation template, for example name of the company, in string data type.
This attribute is currently not used for any user interface, but the developer can provide this
information for future reference.

1 "publisher": "Organization name"

4.6. publisher-id
Optional

Shows the publisher-id of the owner of the automation template, in string data type. The developer
can specify an ID specific to his organisation. This attribute is currently not used for any user
interface, but developer can provide this information for future reference.

1 "publisher-id": "organization.id"

4.7. name

Mandatory

The name of the automation template that describes the actual objective of this template. The name
attribute appears on the user interface as seen in the [Automation_template_main_UI].

www.ubisys.de UblS\JS

1 "name": "Lighting Control Script"

4.8. description
Mandatory

A short description to provide more details about the automation template must be provided with this
attribute. See [Automation_template_main_Ul] for more details.

1 "description": "Lighting control template for home automation"

4.9. bundle-html
Mandatory

Filename of an HTML file, with full information about features, logic, etc. This file may also include
further references to CSS and JavaScript files in the bundle. With this, the developer can create a
detailed explanation of the automation template in the form of an HTML document, which then will be
parsed and displayed on the user interface. See [Automation_template_main_UI] for more details.

1 "bundle-html": "bundle information.html"

4.10. item-description-html
Optional

Name of an HTML template file, with a placeholder for a plain text string that is attached to a
parameter via the JSON schema.

1 "item-description-html": "item description.html"

4.11. bundle-pdf
Mandatory

Filename of an icon in the PDF format which will be shown next to the name of the automation
template and automation instances. See [Automation_template_main_Ul] for more details.

1 "bundle-pdf'": "bundle_ image_icon.pdf"

4.12. logic
Mandatory

The most important field in this JSON is the logic that should point to the main automation JavaScript
file to be executed on the ubisys Gateway by the Duktape JavaScript engine. The logic file utilizes the
properties defined in the schema file and define the automation logic. See Chapter 6 for more details.

www.ubisys.de UblS\JS

1 "logic": "automation_ script.js"

4.13. configuration-schema
Mandatory

The configuration-schema file holds all the possible configurable properties for the given automation
template. The schema files defines the data type, boundary values, default values, icons etc. of all
given properties as well as allowing the developer to define how it should be represented on the user
interface. See Chapter 7 for more details.

1 "configuration-schema": "configuration.schema.json"

Once the JSON and HTML files are parsed, the Ul will be generated as shown.

www.ubisys.de UblS\JS

15:05
< App Store

Advanced Lighting Control

"bundle-pdf" Advanced Lighting Control

Sensor driven lighting control

"version"

-
2700 K /
- ==

06:00

Functions

Requirements

Figure 2. Automation template main Ul

10

"name”
"description”

— "bundle-html"

www.ubisys.de UblS\JS

5. bundle-html

The bundle-html is one of the most vital documents explaining the logic behind the automation
template to the user. Once the template is selected from the user interface, an overview of the
automation template along with the description will be loaded on to the user interface (See
[Automation_template_main_UIl] for more details). The developer can include a variety of images and
texts in sections, subsections to make it intuitive so that end-user can understand the automation. The
name must be the same as defined in the Section 4.9 attribute from bundle-info. The structure of this
file must be in standard HTML.

1 <html>

2 <head>

3 <!-- ... Include meta files if any -->

4 <meta http-equiv="Content-Type" content="text/html "/>

5 <style>

6 /* ... Style formatting for header, div, body, etc */

7 hi { color: black; font-size: 12px; font-weight: bold; }
8 p { color: gray; font-size: 10px; font-weight: normal; }
9 </style>

10 </head>

11 <body>

12 <div id="content">

13 <!—- ... Include images

14 ... Description

15 ... More description -->

16 <p></p>
17 <hi1>Functions</h1>

18 <p>This automation template provides smart ways to control
19 your devices.</p>

20 </div>

21 <script>

22 /* ... Script if required */

23 </script>

24 </body>

25 </html>

11
www.ubisys.de UblS\JS

6. Automation JavaScript file

The automation script contains the core logic part of the automation template. The name must be the
same as defined in the "logic" attribute from bundle-info Section 4.12. The JavaScript Runtime
provides a way to extend your ubisys smart home system with custom logic through such user-
defined scripts, written in the popular JavaScript language. It was chosen as the language for custom,
user-defined automation in the ubisys smart home system, due to its flexibility, widespread use and
knowledge. Add to this the fact that it is fairly uncomplicated to learn for beginners while also
providing ample power for advanced users.

As this JavaScript file defines the logic, it does not define or interacts with the user interface. All the
properties defined in the configuration-schema are parsed by the ubisys application and the resultant
configuration JSON file is generated. See for Chapter 10 more information. These properties are then
available as global variables to the functions in this file. Please make sure to use the identical name for
all the properties in the schema and JavaScript files. Following is a typical overview of the logic
JavaScript file.

LTI L r 777 i i i i i rr i rrrrr i rrrrrrrrrrrrrnrrr g
2 // Global variables

3

4 // For Zigbee apis

5 var Zigbee = require('sys/zigbee');

6

T LI LT 77 777l i rrrrrrr7r7r71r7177177777
8 // The configuration is supplied to this script by the ubisys Zigbee

9 // JavaScript Engine. Its contents will be created by end users using the
10 // ubisys mobile application. These configurations were defined in the
11 // configuration.schema.json file. Lets say, there are 3 properties defined
12 // property_ 1, property 2, property_ 3
13
14 var config = instanceConfiguration();
15
16 J/IITITTTTTITTT 7777777777777 7777777777777
17 // Functions

18

19 // Executes the automation logic
20 function runAutomation()
21 {
22 if (config.property_1)
23 {
24 config.property_2.turn_On();
25 }
26 config.property 3.run();
27 }
28
29 // Main function
30 Zigbee.onReady(function()
31 {
32 runAutomation();

33 });

This example showcases the basic skeleton of the automation JavaScript file. The developer needs to
use the properties defined in the configuration schema and define the functional logic in a similar way
to gain the expected logical output. The current automation template supports following features:

12

www.ubisys.de UblS\JS

« Timers
o Single-shot and periodic timers
o Day timers and solar timers (at or relative to sunrise/sunset)

« Zigbee Integration
- Generic support for all clusters and cluster-directed commands
> Specialized support for the On/Off, Level Control and Window Covering clusters
o Support for a subset of attribute types

A simple use case of a motion based lighting control system is available in

[motion_based_lightning_use_case_section]. For more details regarding the use of these features and
its configurations, refer to the smart home JavaScript Runtime Reference Manual.

13

www.ubisys.de UblS\JS

7. Configuration schema

This file describes all configurable parameters of the automation template, them being type, title, icon,
as well as vital properties. The name must be same as defined in the Section 4.13 attribute from
bundle-info. Please note that the properties mentioned in this schema file only allows the developer to
expose these configurations to the user interface. The developer needs to make sure that these
properties are being used in the automation logic file so as to perform any action/reaction based on
the automation template requirements.

The language of the text used in configuration schema must be English. However, the developer can
add support for other languages by providing additional patch.schema.json files which will be then
used to update the localized JSON object of the configuration schema and hence the user interface
as well. See Chapter 8 for more details about localization. The typical structure of a schema
document looks as follows

1{

2 "$schema": "http://json-schema.org/schema#",
3 "$id": "http://your.organisation.com/configuration.json",
4 "ubisys: :presentation::template::title": '"More Settings...",
5 "ubisys: :presentation::template::icon-pdf": "#automation.pdf",
6 "type": "object",
7 ""properties':
8 {
9 "... Template properties"
10 >
11 }

The schema file starts with the schema tag defining the schema structure used in this file, followed by
the id of the configuration schema. The title and icon files are used for user interface and must be
configured based on your automation template requirements. In the properties, the developer must
define as well as configure different device footprints, parameters and attributes which are required in
the automation logic JavaScript file. These attributes can be initialized to a default value or can be
made available on the user interface for further customization. The data type of each variable must be
in accordance with the way they are used in the automation JavaScript file, but the overall structure of
the file should be in JSON format.

Within the properties section all customizable parameters must be defined. Here in this section, an
example of the system level property is discussed to provide a broader perspective of use of
properties. The details of attributes used to create such properties are discussed in following
subsections of this document.

14

www.ubisys.de UblS\JS

1 "properties'":

2 {

3 "primary_level_value" :

4 A

5 "type": "integer",

6 "name": "Primary Level Value",

7 "default": 178

8 "minimum": 1,

9 "maximum'": 254,
10 "description": "<p>Initial value of brightness</p>",
11 "ubisys: :short-description": "Initial value"
12 }
13 }

The given example shows the declaration of a property named "primary_level_value" of the integer
data type with some default value. Again for the Ul purpose, descriptions can be added along with
minimum/ maximum limits. As such there can be one or more properties based on your automation
template requirements.

7.1. Attributes
7.1.1. $schema
Mandatory

This is the reference schema structure used to create the JSON file. It must have one of the standard
url paths. For example

1 "$schema'": "http://json-schema.org/schema#"

7.1.2. $id

Mandatory

The unique ID of the configuration schema file is maintained in this attribute. It may have a link to the
manufacturer specific file for a customised web URL for more reference. For example

1 "$id": "http://your.organisation.com/your-automation-configuration.json"

7.1.3. ubisys::presentation::template::title

Mandatory

This attribute must have the title of the template section. The value must be in the form of a string.
See Figure 3 for more information.

1 "ubisys::presentation::template::title": "More Settings ..."

15

www.ubisys.de UblS\JS

7.1.4. ubisys::presentation::template::iicon-pdf
Mandatory

The icon of the template is configured via this attribute. The developers can use application-provided
icon files with "#" prefix, or provide their own icon file in the PDF format. This icon is then parsed and
displayed on the user interface. See Figure 3 for more information.

1 "ubisys::presentation::template::icon-pdf'": "settings.pdf"

No Service 08:45

| On/off Targets (Lights) "name"
® 5 Adavions. "ubisys::presentation::template::title"

"ubisys::presentation::template::icon-pdf"

Figure 3. Template title and Icon

7.1.41. type

Mandatory

The type attribute represents the data type of the given element. Here in this case, "properties" is not
confined to any specific data type like string, integer, etc. so it must be defined as an "object" to
represent the generic nature of the data type.

7.1.5. properties

Mandatory

Properties is one of the mandatory elements of the configuration.schema which must include all
possible configurable properties of the given automation template. The properties attribute must have
the same overall structure as the JSON schema. Based on the automation template requirements,
each of these properties must have type, name, default value, etc. attributes. These properties are
displayed in the user interface with which the user can configure them based on the surrounding
conditions in run time. Please note, the attributes must only be defined here. The actual logic and
corresponding actions must be present in the logic file. Each property is based on a specific data
type. As per the requirements of the automation template, the developer needs to decide the data
type for all given properties and define it using corresponding attributes. The supported data types
are as follows.

7.1.6. Data type and supporting attributes

7.1.6.1. type

This attribute is used to declare the data type of the element thereby defining how it will be
processed. It can have one of the following values.

Table 2. Supported Data types

16

www.ubisys.de UblS\JS

Data type Description

string For String type

object For generic object

array To create an array of elements.
integer For integer data type

number For float data type

boolean For boolean data type

More details on how to use of these attributes are discussed in the Section 7.2. Based on the data
type, the developer can also define the range of valid values or define the default value by means of
following attributes.

7.1.6.2. default

The default value of the given element must be provided via this attribute. It should follow the exact
same data type as defined for the given element.

7.1.6.3. minimum

The minimum possible value that the given property is allowed to have is maintained by this attribute.
It must only be used in case "type" is either "integer" or "number".

7.1.6.4. maximum

This attribute holds the maximum possible number that the given property can have. It must only be
used in case "type" is defined as either "integer" or "number".

7.1.6.5. minltems

The minltems defines the number of minimum items necessary in the array. The ubisys application
verifies if the minimum number of elements is there, with reference to the number mentioned by this
attribute. The data type should be an integer. It must only be used in case "type" is defined as an
"array".

7.1.6.6. maxltems

Same as in minltems, the maximum number of items necessary in the array is defined by maxitems.
The data type should be an integer and overall rule minltems < maxIltems must follow. It must only
be used in case "type" is defined as an "array".

7.1.6.7. ubisys:type

Apart from the usual data types defined earlier, the developer can also use additional data types
mentioned in this section. These special data types allows developers to incorporate unique
functionality in their automation template. Each of these types have a specific significance as
described below.

Table 3. Additional Data types

ubisys::type Description

zigbee-application-instance To define the application filter.

time-of-day To represent time of a day in minutes format
color-temperature-k To represent color temperature in Kelvin format
17

www.ubisys.de UblS\JS

ubisys::type Description

percentage To use percentage format
cross-reference To reference two different items
lightlevel:lux To represent the illuminance value in the lux format

For more details on the use of these attributes, please refer to the Section 7.2.

Once the data type, its default value, possible value range, etc is defined, the developer can describe
more details of the given property by help of attributes defined in the following sub sections. Based
on the following attributes, the user interface will be generated.

7.1.7. name

The main title of the section is defined by this attribute. The value must be in the form of a string. See
Figure 4 for more details.

1 "name'": "Illuminance Sensors"

7.1.8. description

The description must contain a detailed explanation of the given element using the "string" data type.
The user can go into more options in order to see this description. For example:

1 "description'": "<p>The set of illuminance sensors available in the network. The
illuminance sensor can provide light level information for the entire zone. You
can also provide information on multiple sensors if required.</p>"

7.1.9. ubisys::short-description

The short-description appears just after the title of the given element. It must describe the element in
a short "string". See Figure 4 for more details.

1 "ubisys::short-description'": "Set of illuminance sensors"

" www.ubisys.de UblS\JS

No Service & 10:05

Zone 1

On/off Targets (Lights) "name"
S f i | i h n H H M n
R e Sl ubisys::short-description

Occupancy Sensors
Set of occup...s in the zone

More Settings...

Figure 4. Automation template user interface

7.1.10. ubisys::presentation::order

The presentation order sequence will be considered while creating an index of the visual elements.
Developers can use this attribute while creating a list of elements in order to define their specific
sequence.

"ubisys: :presentation::order": 0

15:06
< App Store

Dimmable Targets (Lights) "ubisys::presentation::order" : 1

On/off Targets (Lights) "ubisys::presentation::order" : 2

Occupancy Sensors "ubisys::presentation:.order" : 3

[lluminance Sensors

Secondary Zone Triggers

Figure 5. Presentation order sequence

7.1.11. ubisys::presentation::placeholder

The placeholder represents the position of the element in the user interface.

"ubisys: :presentation::placeholder": "Zone"

19 www.ubisys.de UblS\JS

7.1.12. ubisys::presentation::key

The presentation key defines if the element is supposed to be shown in the present user interface or it
was shown in the parent interface. It is of type boolean and must have a value of either true or false.

1 "ubisys::presentation::key": true

7.1.13. ubisys::presentation::mandatory

The mandatory field is of type boolean and defines if the given element is optional or mandatory for a
user to configure.

1 "ubisys::presentation: :mandatory'": false

7.1.14. ubisys::presentation::visible

Similar to the mandatory property, the visible property is of type boolean and defines if the visibility of
the given element is hidden or visible from the start.

1 "ubisys::presentation::visible": true

7.1.15. ubisys::value::cross-reference

To reference two different items or properties of the zones this attribute can be used.

1 "ubisys::value::cross-reference" : "/zones"

7.1.16. ubisys::application-filter

With this attribute, the developer can define a filter to group together specific types of devices. Based
on the filter definition, all devices available in the Zigbee network that qualify for this filter will be
presented on the user interface. The user can then select the devices and add them to the automation
template. Only these devices will then be considered in the context of the automation template and
will behave based on the logic defined in the JavaScript file.

Example filter for "On Off Type Devices"

1 "ubisys::application-filter" :
2 {
3 "qualifying-device-types": [{ "profile-id": 260 3},

4 { "profile-id": 49246 }],

5 "disqualifying-device-types": [],

6 "qualifying-clusters" : [{ "id": 6, "client": false }],
7 "disqualifying-clusters" : [],

8 "include-groups'": true

9 %

In this use-case, we will select "profile-id": 260 (home automation) and let server instances select

2 www.ubisys.de UblS\JS

cluster "id": 6 (OnOff cluster).

Example filter for "Motion Sensor"

1 "ubisys::application-filter" :
2 {
3 "qualifying-device-types": [{ "profile-id": 260 3},

4 { "profile-id": 49246 }],

5 "disqualifying-device-types": [],

6 "qualifying-clusters" : [{ "id": 1030, "client": false }],
7 "disqualifying-clusters" : [],

8 "include-groups'": false

9 %}

The home automation devices are selected with "profile-id": 260 and occupancy sensors are filtered
by selecting the server instance of the cluster "id": 1030 (Occupancy Sensing). The groups can be
excluded from this filter with "include-groups": false.

As seen in the examples, there are four properties that need to be considered to define this filter.

7.1.16.1. qualifying-device-types

List of profile-ids and device-ids of devices that must qualify in this filter.

7.1.16.2. disqualifying-device-types

List of profile-ids and device-ids of devices that should not qualify in this filter.

7.1.16.3. qualifying-clusters

List of cluster-ids and cluster direction that must qualify in this filter.

7.1.16.4. include-groups

Boolean value to define if groups should be included or not. true (groups will be included) or false
(groups will be excluded).

A profile identifier is 16 bits in length and specifies the application profile being
used. A device identifier is 16 bits in length and specifies a specific device within

o Zigbee standards. A cluster identifier is 16 bits in length and identifies an instance
of an implemented cluster specification. Please refer to Zigbee Cluster Library
Specification for more details.

7.1.17. uniqueltems

This attribute must be used in order to define if the particular element is unique. The data type is
boolean and must be used as follows

1 "uniqueItems'": true

21

www.ubisys.de UblS\JS

7.1.18. ubisys::value::full-scale

The full-scale value represents the possible full-scale number which is equivalent to the maximum
possible value in most cases. The data type must be identical to that of the element.

1 "ubisys::value::full-scale'": 254

7.1.19. ubisys::value::stepping

This represents the stepping value that will be used by the script to move from the initial value to the
final value. The data type must be identical to that of the element.

1 "ubisys::value::stepping": 1

7.1.20. items

If the data type is "array" then the ubisys application will look into the "items" section of the element
that describes these values. It must follow the minltems, maxltems boundaries and must use the same
data type as declared before.

1 "daily_turn_off"

2 {

3 "type'": "array",

4 "minItems": 7,

5 "maxItems": 7,

6 "nmame": "Daily Turn Off",

7 "default": [79200, 79200, 79200, 79200, 79200, 79200, 79200 1],

8 "description": '"<p>Determines the device turn off time.</p>",

9 "ubisys::short-description'": "Daily times for turning off lights",
10 "items":

11 [

12 {

13 "type": "integer",

14 "name": "Sundays",

15 "description": "<p>The device turn off time for Sundays.</p>",
16 "ubisys: :short-description": "Turn off time on Sundays",

17 "ubisys: :presentation::icon-pdf": "#schedules.pdf",

18 "ubisys::type'": "time-of-day"

19 3,
20 {
21 "type": "integer",
22 "name": '"Mondays'",
23 "description": '"<p>The device turn off time for Mondays.</p>",
24 "ubisys: :short-description'": "Turn off time on Mondays",

25 "ubisys: :presentation::icon-pdf": "#schedules.pdf",

26 "ubisys::type": "time-of-day"

27 ts

28 "... In total 7 items"

29]

30 }

22

www.ubisys.de UblS\JS

7.1.21. ubisys::value::options

An option is a dictionary of different elements which is shown to the user to select from. The key must
be a value of the data type defined by "type" and the values must be in a dictionary with a "name".
This name will be shown to the user for option selection. For example:

1 "hold_time"

2 {

3 "type": "integer",

4 "name": "Hold On Time",

5 "ubisys::type" : "timespan',

6 "minimum": O,

7 "maximum'": 86400,

8 "default": 600,

9 "ubisys::value: :options"
10 {
11 ""00000": { "name'": '"none" },
12 '"00005": { "name": "5 seconds" },
13 '"00010": { "name": "10 seconds" },
14 '"00015": { '"mame": "15 seconds" },
15 '"00030": { "name": "30 seconds" },
16 '"00060": { '"mame": "1 minute" 3},
17 '"00120": { "name": "2 minutes" },
18 '"00180": { "name": "3 minutes" },
19 '"00240": { "name": "4 minutes" },
20 '"00300": { "name": "5 minutes" },
21 '"00360": { "name": "6 minutes" },
22 '"00420": { "name": "7 minutes" },
23 '"00480": { '"mame": "8 minutes" },
24 "00540": { "name": "9 minutes" },
25 '"00600": { '"mame": "10 minutes" }
26 3
27 }

7.2. Examples

7.2.1. Properties examples using type

This chapter includes a variety of examples showcasing the use of different data types to define the
property. These examples also represent the use of attributes as defined in previous sections.

7.2.1.1. String attribute

1 "zone_identifier":

2 {

3 "type": "string",

4 ""name": "Zone",

5 "default": "Zone",

6 "description": "<p>This is the first zone.</p>",

7 "ubisys: :short-description": "Definition of a default zone",
8

The given example shows the declaration of a string data type for a property named "zone_identifier"
with a default value. For the Ul purpose name, description, short-description can be added. As the

23

www.ubisys.de UblS\JS

data type is string, no limiting attributes like minimum, maximum, minltems, maxltems are required.

7.2.1.2. Array attribute

1 "daily_turn_ off"

2 {
3 "type": "array",
4 "minItems": 7,
5 "maxItems": 7,
6 "name": "Daily Turn Off",
7 "default": [79200, 79200, 79200, 79200, 79200, 79200, 79200 1],
8 "description": '"<p>Determines turn-off time of devices.</p>",
9 "ubisys: :short-description": "Turn-off time of devices",
10 "items":
11 [
12 {
13 "type": "integer",
14 "name": "Sundays",
15 "description": '"<p>Device Turn off time on Sundays.</p>",
16 "ubisys: :short-description": "Turn off time on Sundays",
17 "ubisys: :presentation::icon-pdf": "#schedules.pdf",
18 "ubisys::type'": "time-of-day"
19 3
20 {
21 "type": "integer",
22 "name": '"Mondays'",
23 "description": "<p>Device Turn off time on Mondays.</p>",
24 "ubisys: :short-description'": "Turn off time on Mondays",
25 "ubisys: :presentation::icon-pdf": "#schedules.pdf",
26 "ubisys::type": "time-of-day"
27 ¥
28 "... In total 7 items"
29]
30 }

The given example shows the declaration of an array data type for a property named "daily_turn_off"
with a default value. As the data type is "array", it must have minltems, maxltems and the default must
also be defined with the same size. The contents of the array are provided by the items attribute.

7.2.1.3. Integer attribute

1 "primary_level_value"

2 {

3 "type": "integer",

4 "name": "Primary Level Value",

5 "default": 178

6 "minimum": 1,

7 "maximum": 254,

8 "description": '"<p>Initial value of brightness</p>",
9 "ubisys: :short-description'": "Initial value"
10 }

The given example shows the declaration of an integer data type for a property named
"primary_level_value" with a default value. Again, for Ul purposes, a description can be added along
with minimum/ maximum limits. The data type '"integer" can have minimum, maximum limiting

24

www.ubisys.de UblS\JS

attributes. If defined, they must be of the same data type (integer in this example).

7.2.1.4. Number attribute

1 "pi_proportional_gain"

2 {
3

0w 3 O U

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 }

"type": "number",

"name": "Proportional Gain Multiplier",

"minimum'": 0.05,

"maximum'": 1,

"default": 0.3,

"description": '"<p>The gain value for PI controller.</p>",

"ubisys: :short-description": "Gain for PI controller",

"ubisys::value::options"

{
"0.10": { "mame": "0.1" },
"0.20": { "name": "0.2" },
"0.30": { "nmame": "0.3" },
"0.40": { "name'": "0.4" },
"0.50": { "mame": "0.5" },
"0.60": { "mame": "0.6" },
"0.70": { "name": "0.7" },
"0.80": { "mame'": "0.8" },
"0.90": { "name": "0.9" },
"1.00": { "name": "1.0" }

b

The given example shows the declaration of a number data type which is equivalent to the float data
type for a property named "pi_proportional_gain". Similar to "integer", the "number" can also have
minimum, maximum in float format.

7.2.1.5. Boolean attribute

1 "enable_PI_controller"

2 {
3

0 3 O U »

"type'": "boolean",
"name": "Incorporate PI Controller",
"description": "<p>Whether to include the PI controller.</p>",

"ubisys: :short-description": "Enable the PI controller",
"default": true

The boolean data allows developers to include a true/ false type of property. Such a property is
forbidden to have minimum, maximum, minltems, maxltems attributes. The given example shows the
declaration of a property named "enable_PI_controller".

7.2.1.6. Object attribute

25

www.ubisys.de UblS\JS

1 "Further_items":

2 {

3 "type": "object",

""name": '"Zone",

"description": "<p>Definitions for a single zone</p>",
"properties':

{

"... Additional properties"

O VW 00 3 O U »

The given example shows the declaration of an object data type for a property named
"Additional_properties". For properties of the generic data type which can not be included in one of
the options discussed before, "object" is available. Such properties cannot have minimum, maximum,
minltems, maxltems attributes.

7.2.2. Properties examples using ubisys::type

Following are some of the examples on how developers can use special data types mentioned in
Section 7.1.6.7 to define the properties.

7.2.2.1. zigbee-application-instance attribute

1 "items":

2 {

3 "type": "string",

4 "ubisys::type": "zigbee-application-instance",
5 "ubisys::application-filter"

6 {

7 "qualifying-device-types": [],

8 "disqualifying-device-types": [],
9 "qualifying-clusters" : [],
10 "disqualifying-clusters" : [],
11 "include-groups": false
12 }
13 }

The data type must be string and the ubisys::type must be zigbee-application-instance. The developer
must use this data type to define the application-filter by means of device types, cluster ids as
discussed in Section 7.1.16.

7.2.2.2. time-of-day attribute

1 "start_time"

2 {
3 "type": "integer",
4 "name": "Start Time",
5 "ubisys::type'": "time-of-day",
6 "description": '"<p>Activation time of the automation.</p>",
7 "default'": 21600
8 }
26

www.ubisys.de UblS\JS

This type is designated to represent a specific time of the day in the integer data type, where the
number represents time in minutes. So 10:00 AM is represented as 36000 (i.e. 10 * 3600). The
property should have a name and default value as shown in the above example.

7.2.2.3. color-temperature-k attribute

1 "initial_color_temp_k" :

2 {

3 "type": "integer",

4 "name": "Initial Color Temperature Value",
5 "ubisys::type'": "color-temperature-k",

6 "minimum": 1800,

7 "maximum": 7500,

8 "default": 5000

9 }

The value of the color temperature can be represented by units of kelvin, using the "color-
temperature-k" ubisys::itype. The data type must be integer and it can also have name, a default value
as shown.

7.2.2.4. percentage attribute

1 "initial_color_temp_k" :

2 {

3 "type": "integer",

4 "name": "Initial Brightness level",
5 "ubisys::type'": "percentage",

6 "ubisys::value::full-scale": 120,

7 "default": 70

8 }

Percentage being a widely used term in automation scripts, a separate type has to be dedicated for it.
Developers can use it to define a property as seen in the example. The data type must be integer.

7.2.2.5. cross-reference attribute

1 "items" :

2 {

3 "type": "string",

4 "ubisys::type'": "cross-reference"

5 "ubisys::value::cross-reference" : "/zones"
6 }

This type can be used to reference two different zones in case they are adjacent. The data type must
be string.

7.2.2.6. lightlevel:lux attribute

27

www.ubisys.de UblS\JS

1 "target_light_ level"

2 {

3 "type'": '"number",

4 "name": "Target Light Level",

5 "ubisys::type" : "lightlevel:lux",
6 "minimum": O,

7 "maximum": 100000,

8 "default": null

9 I

"lux" is the unit used to measure the intensity of the light level, hence a dedicated ubisys::type is used
to annotate this unit. The data type must be a "number".

28

www.ubisys.de UblS\JS

7.2.3. "Motion-based lighting control system" use case

Following is an example of configuration.schema.json for a use case of a motion-based lighting
control system. Please note, that the following schema example will only generate the required user
interface. In order to get the automation running, the respective logic JavaScript file, as well as other
mandatory bundle files, need to be present.

-~

00 3 O U1 B W N B

O

10
11
12
13
14
15
16 }

"$schema": "http://json-schema.org/schema#",

"$id": "http://your.organisation.com/configuration.json",

lltype": "object",
"ubisys: :presentation
"ubisys: :presentation
"properties':
{

"motion_sensors'":

{ n e mn }’

"onoff_ devices":

{ n e " }'

"enable_automation"

{ woon }

::template::title": "More Settings...",
::template::icon-pdf": "#settings.pdf",

Inside "properties", there are three sub-items, out of which the first property is the motion_sensors,
which is a filter to group a certain type of devices. The name and description are updated and an icon
is selected to represent the use of this property with presentation::order set to 1. The type is an
"array" with elements present in the "items" section. To filter out devices, "ubisys::type" is set to
"zigbee-application-instance" and the application filter is configured to select motion-sensing devices.

29

www.ubisys.de UblS\JS

1 "motion_sensors":

2 {
3

00 g O U B

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 }

Similarly the onoff_devices property is configured to select devices with the onoff cluster included.

30

lltype" :
""name" :

"description":
"ubisys:
"ubisys:
"ubisys:
"ubisys:
"ubisys:
"ubisys:
"ubisys:
"items":

{

lltype" o
"ubisys::type":

"array",

"Motion Sensors",
"<p>Motion sensors in the zone.</p>",

:short-description": "Motion sensors",
:presentation::icon-pdf" : "#occupancy.pdf",
:presentation: :template::title": "Add Sensors...",
:presentation: :template: :icon-pdf": "#occupancy.pdf",
:presentation: :mandatory'": true,
:presentation: :visible": true,
:presentation: :order": 1,

"string",

"zigbee-application-instance",

"ubisys::application-filter"

{

"qualifying-device-types": [{ "profile-id": 260 },

{ "profile-id": 49246 }],

"disqualifying-device-types'": [],
"qualifying-clusters" : [{ "id": 1030,

"client": false }],

"disqualifying-clusters" : [],
"include-groups":

false

www.ubisys.de UblS\JS

1 "onoff_ devices":

2 {
3

00 g O U B

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 }

"type": "array",
"name": "On/off light devices",
"description": '"<p>The set of on/off lights in the zone.</p>",
"ubisys: :short-description": "Set of on/off lights",
"ubisys: :presentation::icon-pdf" : "#application-lighting.pdf",
"ubisys: :presentation::template::title'": "Add Light Devices...",
"ubisys: :presentation::title": "Select On/off Light Devices",
"ubisys: :presentation::template::icon-pdf": "bundle.pdf",
"ubisys: :presentation: :mandatory": true,
"ubisys: :presentation::visible": true,
"ubisys: :presentation: :order": 2,
"items":
{

"type": "string",

"ubisys::type":

"zigbee-application-instance",

"ubisys::application-filter"

{

"qualifying-device-types": [{ "profile-id": 260 3},

{ "profile-id": 49246 }],

"disqualifying-device-types": [],

"qualifying-clusters" : [{ "id": 6, "client": false }
"disqualifying-clusters" : [],
"include-groups'": true

1,

The third property is of type boolean with the name enable_automation, to decide if the automation
logic should be enabled or disabled.

1 "enable_automation"

2 {
3

0w 3 O U1

9
10
11
12
13 }

"type": "boolean",
"name": "Incorporate PI Controller",

"description'":

"ubisys: :short-description': "Enable the PI controller",
"default": true,

"ubisys::value::options"

{

"true":

{ "name": "Enable automation template" },

"false": { "name":

"Disable automation template" }

"<p>Whether to include the PI controller.</p>",

An example of a JavaScript file implementing the automation logic by utilizing the above-mentioned
properties is available as shown below.

31

www.ubisys.de UblS\JS

0 N 00 U B W N B

R R R R
w N R OV

14
15
16
17
18
19
20
21
22
748}
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
B0
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

32

[ITTTTTT0TTT 07177707777 r i i 7 rrr 07 i777070707077077070 7707770770777/
// Global variables

// For Zigbee apis
var Zigbee = require('sys/zigbee');

// To support timer functionalities
var Timer = require('sys/timers');

LILTTTIITL LT LI L 7 T r L7707 777 i 70 r 7000770 7771770707071770717717777
// The configuration is supplied to this script by the ubisys Zigbee

// JavaScript Engine. Its contents will be created by the end user using the
// ubisys the mobile application. These configurations were defined by the //
configuration.schema.json file

var config = instanceConfiguration();

LITILTTLIII TP I P 7 777 i i i i 77771 77070777071 7407407711777 7

// Functions

// Called whenever the occupancy attribute changes
function onOccupancyStateChange(attributeID, attribute)

{
print('motion sensor value changed to', attribute);
if (config.enable_automation)
{
if (attribute.testBit(1))
{
// Turn on the Lights
config.onoff_ devices.getOnOffCluster().on(function(status)
{
print('Lights turned on:', status)
)i
b
else
{
// Turn off the lights
config.onoff devices.getOnOffCluster().off(function(status)
{
print('Lights turned off:', status)
)i
B
b
else
print('Automation template is disabled.')
b
// Main function

Zigbee.onReady(function()
{

// Get the occupancy sensing cluster
var occupancy = config.motion_sensors.getApplication(1).getCluster(0x0406);

// Register for attribute changes on attribute 0 (Occupancy, bitmap)
occupancy.onAttributeChanged(0x0000, onOccupancyStateChange);
)i

www.ubisys.de UblS\JS

The Zigbee variable allows the use of all Zigbee functionality, with which connected devices can be
managed. The timer variable provides basic support for timer operations, which can be useful to
create time-based events. Once the Zigbee.onReady is called, the automation initialization will start,
which will use the Zigbee functionality to register an event for an occupancy attribute change. Thus,
any changes in the occupancy bit triggers the onOccupancyStateChange() function call. Inside this
function, it checks the value enable_automation property and controls the onoff_devices.

33

www.ubisys.de UblS\JS

8. Adding support for other languages

The bundle-info.json and configuration-schema must be in the English language. But there can be
situations where a developer wants to add support for other languages. So this chapter explores a
step-by-step procedure on how the developer can add multilingual automation templates. While
loading the automation template, the ubisys application first loads the default files and generates the
localized version of the configurations. Then the application checks the system language and if it is
not English, it loads the corresponding language file from the automation template bundle and
updates the localized configurations version. Once done, this will be used to create the user interface.

o This is an optional feature and it is up to the developer to add support for additional
languages.

To add support for a new language, the developer needs to create a patch file that includes
instructions and texts in the new language. With the current state, it is mandatory to provide two files
for each newly supported language, namely configuration.XX.patch.schema.json and bundle-
info.XX.patch.json. Here XX stands for language code in "ISO 639-1" code. So to support the
German (Deutsch) language, the filenames must be bundle-info.de.patch.json and
configuration.de.patch.schema.json.

These files should have an array of JSON containing operation, path and value. The ubisys application
supports following operations

Table 4. Supported operations

Operation Description

"add" To append the contents

"remove" To remove the contents

"replace" To replace the contents with the given "value"

"move" To remove the contents from "from" location and add it to "path" location
"copy" To copy the contents from "from" location and add it to "path" location
"test" To check if the value matches the "value" present at "path"

Example to update bundle-info.json

1 {

2 "id": "lighting.example",

3 "category": "lighting",

4 "keywords": ["illuminance", "sensors', "HCL"],

5 "version'": "1.0.0",

6 "publisher'": "Organisation name",

7 "publisher-id": "organisation.id",

8 "name": "Lighting Control Script",

9 "description": "Lighting control script for home automation",
10 "bundle-html": "bundle_ information.html",
11 "item-description-html": "item description.html",
12 "bundle-pdf": "bundle image_icon.pdf",
13 "logie": "automation_ script.js",
14 "configuration-schema'": '"configuration.schema.json"
15 }

bundle-info.de.patch.json must look like

34

www.ubisys.de UblS\JS

1

2 { "op": "replace",

3 "path": "/name",

4 "value'": '"name in other_ language"
5 3

6 { "op": "add",

7 "path": "/description",

8 "value": " and systems"

o I
10]

The resultant localized JSON would look like

1 {

2 "id": "lighting.example",

3 "category": "lighting",

4 "keywords'": ["illuminance", "sensors', "HCL"],

5 "version'": "1.0.0",

6 "publisher": "Organisation name",

7 "publisher-id": "organisation.id",

8 "name": "name_in_other_language",

9 "description": "Lighting control script for home automation and systems",
10 "bundle-html": "bundle_information.html",
11 "item-description-html": "item description.html",
12 "bundle-pdf": "bundle image_icon.pdf",
13 "logie": "automation script.js",
14 "configuration-schema'": '"configuration.schema.json"
15 }

As seen, there are two operations, one to replace the contents present on the path "/name" with the
given value "name_in_other_language". So the application will look for the path into the bundle-
info.json and replace its contents. And the second operation is to add contents. Similarly, the
configuration.de.patch.schema.json can be generated to update the content of
configuration.schema.json to update the user interface. As such, the developer can add any number
of operations based on the template requirements.

35

www.ubisys.de UblS\JS

9. index.plist

The plist is an important file that provides details on the available automation bundle files on the
webserver. For every newly created automation bundle, the developer should add an entry in the
index.plist file. The basic structure with one entry of an automation bundle is shown here

1 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

\S]

3 <plist version="1.0">

4 <array>

5 <dict>

6 <key>id</key>

7 <string>unique_id_of_ automation_script</string>

8 <key>icon-pdf</key>

9 <string>icon_of_ the_automation_script</string>
10 <key>en</key>
11 <dict>
12 <key>name</key>
13 <string>name_ of_ the_ automation script</string>
14 <key>description</key>
15 <string>short description of the automation_script</string>
16 </dict>
17 </dict>

18 </array>
19 </plist>

The basic skeleton of the document includes an array of dictionaries, where each dictionary belongs
to a unique automation bundle file present on the webserver. Each dictionary should have three key-
value pairs.

id The unique id of the automation bundle is provided in string format. The contents must match with
the id from the bundle-info.json file.

icon-pdf The icon pdf file will be used to display an icon in front of the automation bundle name in the
ubisys application.

en The third entry is another dictionary that contains the name and a short description of the
automation bundle file. The developer must provide these details based on the contents of the
automation bundle files.

Once the index.plist is parsed, the provided array will be mapped into the user interface from where
the user can select a specific automation bundle. Based on the user selection, the bundle file will be
downloaded and processed further.

36

www.ubisys.de UblS\JS

10. Parsed JSON file

Once the bundle file is parsed by the ubisys application, it will generate a JSON file that summarizes
the configuration schema. This file includes all the properties and their respective values (the ones
selected by the user or default ones) and will be forwarded to the ubisys gateway for further
processing. The configuration variables in automation JavaScript file will be initialised with these
values and will be used accordingly. Following is a snippet from one of such a file generated by the
ubisys application. Please note, the developer is not required to create or configure such a file, this
example is just to give some insights into the functional behavior of the ubisys application.

1{

2 "configuration":

3 A

4 "daily off": [82800, O, O, O, O, O, 82800],
5 "daily operating times":

6 [

7 [21600, 792007,

8 [18000, 828007,

9 [18000, 828007,

10 [18000, 82800],

11 [18000, 828007,

12 [18000, 82800],

13 [21600, 79200]

14 1,

15 "hold_time_on": 900,

16 I,

17 "description'": "Bedroom configuration',
18 "enabled": 1,

19 "template": "your.template.settings",
20 "uuid": "1234-1234-0000-0000-12345678"
21 }

37

www.ubisys.de UblS\JS

11. Troubleshooting_errors

In case of the automation stopping you will see a greyed out start button with an exclamation mark.

Automations

4 Office HR
@ Advanced Lighting Control

To find out what the cause is you can go to the web surface of the gateway, specifically
"maintenance", which will display any errors in the system log data window. Here are two examples
what the log window might show as causes:

a) Missing illuminance sensor, e.g. initially included in the automation but at some later point having
been deleted from the inventory.

Solution - Delete the sensor from the automation template as well.
System log data

JS Host Service

Jan 9 11:08:11 jshostd[864]: [AIRunner] Automation instance c79275f6-1c70-488b-b907-9baea18a5d05 enabled

Jan 911:08:11 jshostd[864]: [AIRunner] State Stopped

Jan 911:08:11 jshostd[864]: [ScriptHost] [Office HR - 0xb62c8398] ContextWrapper threadLoop started (3402)

Jan 911:08:11 jshostd[864]: [AIRunner] Instance ¢79275f6-1¢70-488b-b907-9baea18a5d05 running

Jan 911:08:11 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys jshostd.query-instances (57ea157e-9f97-f2bd-9cds-fac3de058f04) [6 bytes]

Jan 9 11:08:12 jshostd[864]: [ScriptHost] [Office HR - 0xb62¢8398] Cor pper threadLoop terminated on error: p States(): Unknown sensor application instance (00:17:88:01:02:01:21:A2/#2)
Jan 9 11:08:12 jshostd[864]: [AIRunner] Instance ¢79275f6-1c70-488b-b907-9baea18a5d05 stopped

Jan 9 11:08:12 jshostd[864]: [AIRunner] Instance c79275f6-1¢70-488b-b907-9baea18a5d05 destroyed

Jan 911:08:12 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys jshostd.disable-instance (57ea157e-9f97-f2bd-9cd8-fac3de058f04) [16 bytes]

Jan 9 11:08:12 jshostd[864]: [AIRunner] Automation instance ¢79275f6-1¢70-488b-b907-9baea18a5d05 disabled '/

b) Missing target light, e.g. initially included in the automation but at some later point having been
deleted from the inventory.

Solution - Delete the target light from the automation template as well.

38

www.ubisys.de UblS\JS

39

System log data

JS Host Service +

Jan 9 11:12:58 jshostd[864]: [AIRunner] Instance c79275f6-1c70-488b-b907-9baeal8a5d05 running -
Jan 9 11:12:58]: [Scrip!] [Office HR - 0: Cy pper threadLoop started (3547)

Jan 9 11:12:58 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys jshostd.query-instances (57ea157e-9f97-f2bd-9cd8-fac3de058f04) [6 bytes]

Jan 9 11:12:59]: [Scrip!] [Office HR - 0: Cy pper threadLoop i on error: populateTargetDevices(): Unknown device instance (00:1F:EE:00:00:00:5E:D7/#1)

Jan 9 11:12:59 jshostd[864]: [AIRunner] Instance c79275f6-1¢70-488b-b907-9baea18a5d05 stopped

Jan 9 11:12:59 jshostd[864]: [AIRunner] Instance c79275f6-1c70-488b-b907-9baea18a5d05 destroyed

Jan 9 11:12:59 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys.jshostd.query-templates (57ea157e-9f97-f2bd-9cd8-fac3de058f04) [6 bytes]

Jan 9 11:12:59 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys jshostd.query-instances (57ea157e-9f97-f2bd-9cd8-fac3de058f04) [6 bytes]

Jan 9 11:12:59 jshostd[864]: [FRPCServer] Incoming RPC request: de.ubisys.jshostd.get-instance-configuration (57ea157e-9f97-f2bd-9cd8-fac3de058f04) [16 bytes]

K1 |

www.ubisys.de UblS\JS

12. Integrated icons

The ubisys app supports some predefined icons, which developers can include in their customized
scripts. In order to include them, "#" prefix (ex: "#application-lighting.pdf") must be used.

40

www.ubisys.de UblS\JS

M

Table 5. Images supported by ubisys application

File name

Icon

actions.pdf

A

application-awning.pdf

application-curtain.pdf

application-door-lock.pdf

application-fan.pdf

www.ubisys.de Ub&JS

42

File name Icon

application-floor-heating.pdf

application-lighting.pdf

application-mains-outlet-uk.pdf

application-mains-outlet.pdf

v W

application-other.pdf

-— -
s DS
/ \

www.ubisys.de Ubl&JS

43

File name

Icon

application-projector-screen.pdf

application-radiator-heating.pdf

°
| | | | |
application-roller-exterior.pdf
|
application-roller.pdf
|
application-security-contact.pdf L]

www.ubisys.de Ub&JS

44

File name Icon

application-security-fire.pdf

application-security-keyfob.pdf

application-security-keypad.pdf

application-security-leakage.pdf

application-security-motion.pdf

www.ubisys.de Ubl&JS

45

File name Icon

application-security-siren.pdf

application-security-tilt.pdf

application-security-vibration.pdf

application-shade.pdf

NN NN

application-shutter.pdf

www.ubisys.de Ub&JS

46

File name

Icon

application-unused.pdf

application-water-heater.pdf

application-window.pdf

automation-disabled.pdf

automation-failed.pdf

www.ubisys.de UblS\JS

47

File name Icon

automation-new.pdf

E

M
/
e\

automation-notinstalled.pdf

automation-restarting.pdf

b ©

automation-running.pdf

/

automation-settings.pdf

2

48

File name

Icon

automations.pdf

basic-configuration.pdf

~ 4
- -
- \ -
Y 4 8
4 \

! \

\W‘t,

e

-
((’g
<o

JVMég
o\

~
-

battery-level-0.pdf

battery-level-100.pdf

T

battery-level-25.pdf

www.ubisys.de Ubl&JS

49

File name

Icon

battery-level-50.pdf

battery-level-75.pdf

bindings.pdf

)

S—
)

blendz-gateway.pdf

N

button-back.pdf

www.ubisys.de Ubl&JS

50

File name

Icon

button-delete.pdf

button-discard.pdf

button-edit.pdf

button-next.pdf

button-save.pdf

www.ubisys.de Ub&JS

51

File name

Icon

color.pdf

components-zigbee.pdf

configuration.pdf

control-action-off-on.pdf

control-action-on-off.pdf

mw = Y (=

m -r\-

2. N

[| — [| —

-y \N—¢ —

-\ M\
. N

www.ubisys.de Ub&JS

52

File name

Icon

control-action-toggle.pdf

control-double-pushbutton.pdf

control-double-switch.pdf

control-pushbutton-left.pdf

control-pushbutton-right.pdf

www.ubisys.de Ubl&JS

53

File name Icon

control-pushbutton.pdf

control-switch-left.pdf

control-switch-right.pdf

control-switch.pdf

control-updown-switch.pdf

| BN
< | l

www.ubisys.de Ubl&JS

File name Icon

ct-cool-white.pdf

&b
o/

ct-warm-white.pdf

dateAndTime.pdf

J

<
(¢
M
(&

(<&
'€
O

disabled.pdf

O

discard.pdf

54

www.ubisys.de Ub&JS

55

File name Icon

door-lock-lock.pdf

door-lock-state-intermediate.pdf

door-lock-state-invalid.pdf

door-lock-state-locked.pdf

door-lock-state-unlocked.pdf

www.ubisys.de UblS\JS

File name Icon
door-lock-unlock.pdf
()
down.pdf
N 4
enabled.pdf
environment-bathroom.pdf ~
[X N N X}
CC NN N
L C B B)
L C I B)
L I I)
e 60 a6
environment-bedroom.pdf
|
|

56

www.ubisys.de Ub&JS

57

File name Icon

environment-cellar.pdf

|
— -
|
—
environment-diningroom.pdf F [} R‘
J“ vy

environment-dressingroom.pdf

environment-entry.pdf I
I
, ==
A Bl
environment-garage.pdf
o/ o/
| |

www.ubisys.de Ubl&JS

58

File name Icon

environment-garden.pdf N 1 p
=N\ -
Y

environment-guestroom.pdf

environment-hallway.pdf

environment-hobbyroom.pdf

environment-kitchen.pdf

www.ubisys.de Ubl&JS

59

File name

Icon

environment-livingroom.pdf

environment-nursery.pdf

environment-office.pdf

environment-other.pdf

~
”~

environment-pantry.pdf

ANPNAN

www.ubisys.de Ub&JS

60

File name

Icon

environment-pool.pdf

environment-stairway.pdf

environment-storage.pdf

D

GEEE .,
FEEEEANNY

environment-watercloset.pdf

|

failure.pdf

www.ubisys.de Ub&JS

61

File name

Icon

favorites.pdf

i
[\

gateway.pdf
/\
groups.pdf m
home.pdf
|

7\

ias-arm-away.pdf

J

www.ubisys.de Ub&JS

62

File name

Icon

ias-arm-day.pdf

ias-arm-night.pdf

ias-armed-away-small.pdf

ias-armed-away.pdf

ias-armed-day-small.pdf

www.ubisys.de Ubl&JS

63

File name

Icon

ias-armed-day.pdf

ias-armed-night-small.pdf

ias-armed-night.pdf

ias-arming-away.pdf

ias-arming-day.pdf

www.ubisys.de Ubl&JS

64

File name

Icon

ias-arming-night.pdf

ias-cie.pdf

ias-disarm.pdf

ias-disarmed.pdf

ias-entry-delay.pdf

www.ubisys.de UblS\JS

65

File name Icon

ias-exit-delay.pdf

ias-in-alarm-small.pdf

ias-in-alarm.pdf

ias-not-ready-to-arm-small.pdf

ias-not-ready-to-arm.pdf

www.ubisys.de UblS\JS

66

File name Icon
identify.pdf
Ry
-\
illuminance.pdf -

interval.pdf
|
—
- \ / -
nmin
|
level.pdf
lift-maximum.pdf
L]
L]
|
|

www.ubisys.de Ub&JS

File name Icon

lift-minimum.pdf

locked.pdf

metering.pdf

network-discovery.pdf

notification-viewed.pdf

67

www.ubisys.de Ubl&JS

68

File name

Icon

notification.pdf

occupancy.pdf

occupied.pdf

off.pdf

on.pdf

- O e) ¥

www.ubisys.de UblS\JS

69

File name Icon

price.pdf

relative-humidity.pdf

repair.pdf
scenes.pdf /\
| \ J >
schedules.pdf
|

www.ubisys.de Ub&JS

70

File name

Icon

security-zone-all-clear.pdf

security-zone-battery-low.pdf

security-zone-invalid.pdf

security-zone-tampered.pdf

security-zone-warning.pdf

O¥OI[] o

www.ubisys.de UblS\JS

71

File name

Icon

security-zone-warning2.pdf

settings.pdf

shade-lift.pdf

A\ —
shade-tilt.pdf , /
=N\ -
/\ 7 /
- 7
/
stop.pdf

www.ubisys.de Ub&JS

72

File name

Icon

success.pdf

sunrise.pdf A
u
sunset.pdf -
w
|

surveillance.pdf

temperature.pdf

www.ubisys.de Ub&JS

File name Ic

thermostat-automatic.pdf

thermostat-cool.pdf

thermostat-emergency-heating.pdf

~ _ >
~ >

thermos tat-fan-1.pdf
ﬂ \
thermos tat-fan-2.pdf

T
\

(

73

www.ubisys.de Ubl&JS

74

File name

Icon

thermostat-fan-3.pdf

thermostat-fan-auto.pdf

thermostat-fan.pdf

thermostat-heat.pdf

thermostat-louver-0.pdf

www.ubisys.de Ubl&JS

75

File name Icon

thermostat-louver-100.pdf

thermostat-louver-25.pdf

thermostat-louver-50.pdf

thermostat-louver-75.pdf

thermostat-louver-autoswing.pdf

www.ubisys.de Ubl&JS

76

File name

Icon

thermostat-off.pdf

thermostat-precooling.pdf

tilt-maximum.pdf

tilt-minimum.pdf

time.pdf

www.ubisys.de Ubl&JS

77

File name Icon

ubisys-g1.pdf

unlocked.pdf

unoccupied.pdf

up.pdf

zones.pdf

www.ubisys.de UblS\JS

Il: Javascript

78

www.ubisys.de UblS\JS

13. Features
The current feature set of the preview release contains the following features:

« Basic script editing and control, viewing of log messages
o Timers
o Single-shot and periodic timers
- Day timers and solar timers (at or relative to sunrise/sunset)
« Zigbee Integration
o Generic support for all clusters and cluster-directed commands
> Specialized support for the On/Off, Level Control and Window Covering clusters

o Support for a subset of attribute types

79

www.ubisys.de UblS\JS

14. Fundamentals

A basic user interface to edit and control scripts is provided and accessible via a web browser. Any
number of scripts can be defined, after which each script can be enabled or disabled separately. If
enabled, it will be executed until it is either manually disabled or stopped due to an error. All enabled
scripts are run simultaneously and independently off each other. The execution of a script is event-
based. This means that code contained in a script is executed in response to a certain event
occurring, after which the script execution must be returned to the script runtime. The script must not
(and cannot) block and wait for an event to occur (e.g. in a loop). When a script is started, it is loaded
into memory and compiled to an internal representation. It is then executed once, i.e. any code in the
main program (which is not encapsulated into functions) is executed once. During this initial
execution, the script needs to register for any events which it desires to handle. Events could be, for
example:

«» a change of a Zigbee attribute on a device
> a light switched on or off
o brightness of a light changed
> occupancy sensor state changed
« atimer
- after a certain interval
- triggered on a specific day time
o triggered periodically
o sunset/sunrise
« completion of a previously requested operation

- a Zigbee command sent to a device Each script maintains a dedicated, cyclic log buffer into
which log data is collected. The log data is accessible to the user/developer through the web
browser.

Log data can either originate from the script runtime and its APls itself or can be generated by
the script via print() or alert() statements.

14.1. Naming conventions

JavaScript is a prototype-based language and does itself not know about classes or interfaces, but
both terms are used in this document to describe the following concepts:

14.1.1. Class

A class refers to a public, accessibly named constructor function of the class name. All class member
functions are publicly accessible functions, which are exported as properties of the created object
instance.

14.1.2. Interface

An interface is similar to a class in that it exports publicly accessible functions, but does not have a
user-visible/accessibly constructor function. It is therefore not possible to directly instantiate
interfaces. An instance of a given interface is returned by various functions of the public API.

% www.ubisys.de UblS\JS

14.1.3. Inheritance

Contrary to class-based languages, inheritance in JavaScript is implemented via prototype chains.
Class- and interface-based inheritance can easily be modelled via prototype chains. A class is said to
inherit from another class (the base class) if it provides a superset of the base class’
functions.Examples are the various clusters. The generic cluster implements functions to obtain
attributes and send generic commands. Specialized derivatives exist for specific clusters:

the OnOffCluster supports on(), off() and toggle() functions to act on the switch output and a function
to monitor the on/off state. Besides that, it inherits the basic functionality of the generic cluster, e.g.
getAttribute().

14.2. Firmware version references

Features introduced in newer firmware releases are indicated by the firmware version stated in
rectangular brackets on the right of the feature, e.g. [1.5].

14.3. APIs/Interfaces

Several Application Programming Interfaces (APls) are provided by the runtime to be utilized by
scripts. All APIs are organized into so-called modules. A script must import the modules which it
requires to be able to use them. Modules are imported via the require() function:

1 var Timer = require('sys/timers');

The module identification (sys/timer) is set by the runtime and identifies the module to be imported.
The variable name (Timer) is set by the user/developer of the script and can be chosen freely, as
permitted by the JavaScript language. Each module exports a certain number of functions, as
specified in the module’s documentation. They are available as properties on the variable assigned by
the require() function:

var Timer = require('sys/timers');

1

2

3 Timer.createPeriodicTimer("5s", function()
4 {

5 // code will be executed every 5 seconds
6

D)

14.4. Zigbee and Zigbee Cluster Library (ZCL) Basics

The Zigbee device model is defined by devices, applications, clusters and attributes. A device usually
represents a physical Zigbee device, e.g. a dimmable light. Devices are primarily identified by their
unique 64-bit |IEEE address. Each device can (and usually does) host multiple applications.
Applications are identified by their endpoint, within the range of 1 to 240. An application is a separate
functional entity, encapsulation one function of the device. A dimmable light might consist of several
applications: the actual light (switchable/dimmable output) plus one or several switch inputs. Each of
these functions is represented by one application. Each application itself consists of various clusters.
A cluster represents a standardized sub-unit of the application’s function. A cluster is identified by its
16 bit cluster ID. Examples for clusters would be an On/Off cluster to switch an output, a Level
Control to e.g. set the brightness of a dimmable lamp or a Color Control cluster to set the colour of a
lamp. The Zigbee Cluster Library defines a pre-defined set of applications and clusters and states

81

www.ubisys.de UblS\JS

mandatory and optional clusters for each application. Each cluster can receive (or generate) a certain
set of commands, e.g. an “on” command to switch a light on (directed to the On/Off cluster). Besides
that, each cluster defines a certain set of attributes, which represent the current state (e.g. On/Off
state, brightness level, power consumption) or configuration of the cluster. Atributes are defined by
their 16 bit attribute Id and can have various types, e.g. bool, unsigned/signed integers of various
lengths etc.

82

www.ubisys.de UblS\JS

15. Programming Interface

15.1. Globals and Builtins
Several free functions are provided in the global context:

« require() to import modules

« print() and alert() provide a way to log diagnostic output of a script. In a future revision, a
dedicated logging API will be provided. Both functions may take multiple arguments, which will be
separated by spaces. Standard string coercion rules apply, e.g. an Object'’s toString() method will
be called, if available.

The runtime environment supports the standard ECMAScript builtins, e.g.:

« Date
« Regex
« Error, RangeError, TypeError, SyntaxError, ReferenceError constructors

« Various Buffer objects, please refer to Section 15.4 for details.
15.2. Timer API

1 var Timer = require('sys/timers');

Allows the creation of timer events. Supports the following types of timers:

« Single-shot (e.g. in 10 seconds)
« Periodic (e.g. every 5 minutes)
. Fixed day time (at 10:30am every day)

« At or relative to sunrise or sunset

15.2.1. Exported functions

15.2.1.1. createTimer()

1 function createTimer(timespec, callback)

Parameters:

timespec specifies when the timer should fire (see below)

callback the function to invoke at the given time.

Returns:
The Timer instance (see Section 15.2.2.1). Ignore if not used.

Throws:

% www.ubisys.de UblS\JS

SyntaxError the timespec could not be parsed
RangeError a negative timeout was given

TypeError the callback is not callable

Format of the timespec parameter:

« a plain integral number indicates the time in seconds
« A combination of integral numbers with time suffixes (h/m[in]/s[ec]/ms)

. If multiple suffixes are used, they must be specified in the natural order (i.e. hours before minutes
before seconds)

Examples of valid timespecs:

« 10 (10 seconds)
« 1h
« 1h30min

15.2.1.2. createPeriodicTimer()

1 function createPeriodicTimer(timespec, callback)

Same as createTimer(), except that the timers fires periodically.
15.2.1.3. createDayTimer()

1 function createDayTimeTimer(timespec, callback)

Parameters:

timespec specifies when the timer should fire (see below)

callback the function to invoke at the given time.

Returns:
The Timer instance (see Section 15.2.2.1). Ignore if not used.

Throws:

SyntaxError the timespec could not be parsed
RangeError a negative timeout was given

TypeError the callback is not callable

o www.ubisys.de UblS\JS

Format of the timespec parameter:

e hh:mm:ss
The day time (in 24-hour notion) when the timer should fire. The seconds part (:ss) is optional and
may be left out.

. sunrise, sunrise+/-offset, sunset, sunset+/-offset A timer at or relative to the sunrise/sunset.
Requires that the geographic position of the gateway is set.

Offset may be any of the following:

o a plain integral number representing seconds

o A combination of integral numbers with time suffixes (h/m[in]/s[ec]/ms)
Examples of valid timespecs:

« sunrise+1h
« sunset-2h30
. 17:00

Examples for invalid timespecs:

« noon (undefined)
« 17m (plain offset)

. sunrise + 1m (spaces not allowed)

15.2.2. Interfaces and Classes

15.2.2.1. Timer

1 interface Timer

Represents a timer, as generated by any of the timer functions. A reference to it may be kept to later
cancel the timer. If cancellation of the timer is not needed, it can simply be ignored.

1 function cancel()

Cancel the referenced timer, if it is still active.

1 function isActive()

[1.7.3]
Returns:

true If the timer is active

85

www.ubisys.de UblS\JS

false If the timer triggered or was manually cancelled

15.3. Zigbee API

1 var Zigbee = require('sys/zigbee');

15.3.1. Exported functions

15.3.1.1. onReady()

1 function onReady(callback)

Register a callback function to be invoked when the Zigbee module is ready and devices can be
looked up.

Parameters:
callback The function to invoke when the ZigBee module is ready. Will be invoked without
any parameters.
Throws:
TypeError The callback parameter is not callable

The required Zigbee devices shall be lookep-up via getDevice() from within the callback or after the
callback was invoked. Device lookup will fail if attempted before the

15.3.1.2. onUpdate()

1 function onUpdate(callback)

Register a callback function to be invoked when an update of the internal representation of the Zigbee
devices was received. Under normal circumstances and for simple cases, this event does not need to
be handled. Any in-memory representation will be updated seamlessness, while e.g. removed devices
are invalidated and would trigger an error on access.

Parameters:

callback The function to invoke on an update. Will be invoked without any parameters.

Throws:

TypeError The callback parameter is not callable

86

www.ubisys.de UblS\JS

15.3.1.3. getDevice ()

1 function getDevice(address)

Parameters:
address Specifies the 64-bit IEEE address of the device as a string. The address must be
given in hexadecimal, with or without double-colon separators (e.g.
‘001fee0012345678’ or ‘00:1f:ee:00:12:34:56:78’).
Throws:
SyntaxError The address was invalid and could not be parsed.

Returns:
The Device instance (see Section 15.3.2.1) or undefined if the device was not found.

15.3.1.4. getGroupByName()

[1.9.4]

1 function getGroupByName(name)

Parameters:
name Specifies the user-visible name of the group.
Returns:
The Group instance (see Section 15.3.2.3) or undefined if the group was not found. The group

name is configured when the group is created via the ubisys app. If multiple groups exist with the
same name, it is implementation-defined, which one is returned.

15.3.1.5. getGroupByld()

[1.9.4]

1 function getGroupById(id)

Parameters:
id Specifies the internal group id. The group id remains constant if the group is renamed or
modified, but not if it is deleted and re-created.
Throws:

TypeError id is not an integer number

87

www.ubisys.de UblS\JS

RangeError id is negative

Returns:
The Group instance (see Section 15.3.2.3) or undefined if the group does not exist.

15.3.1.6. getGroupByAddress()

[1.9.4]

1 function getGroupByAddress(address)

Parameters:

address Specifies the group address.

Throws:

TypeError address is not an integer number

RangeError address is not in the range [1, Oxfff]

Returns:

The Group instance (see Section 15.3.2.3) or undefined if the group does not exist. If multiple
groups exists with the same group address (in different networks), it is implementation-defined, which
group will be returned.

15.3.1.7. getScene()

1 function getScene(name)

Parameters:

name Specifies the name of the scene.

Throws:

TypeError name is not a string

Returns:

The Scene instance (see Section 15.3.2.4) or undefined if the scene does not exist. The
scene name is set when the scene is created via the ubisys app.

15.3.1.8. getSceneByld()

88

www.ubisys.de UblS\JS

1 function getSceneById(id)

Parameters:

id Specifies the internal id of the scene. The id is assigned on scene creation and remains
stable if the scene is renamed or modified.

Throws:

TypeError id is not an integer

Returns:

The Scene instance (see Section 15.3.2.4) or undefined if the scene does not exist.

15.3.1.9. getScenes()

[1.7.3]

1 function getScenes()

Returns:
An array containing Scene (see Section 15.3.2.4), representing all defined scenes in the system.

15.3.1.10. lookup()

[1.9.4]

Provides a generic way to lookup Zigbee instances by a specification string.

1 function lookup(spec)

Parameters:

spec Specifies the instance to be retrieved.

Throws:
TypeError spec is not a string

SyntaxError spec has an invalid syntax which could not be parsed

RangeError a component of the spec string is outside of its valid range
Returns:

89

www.ubisys.de UblS\JS

The specified instance or undefined if the requested instance does not exist.

Supported lookup specification:

» Device Lookup Spec string format: hexa-decimal address, e.g. 00:1f:ee:00:11:22:33:44
Returns a Device instance or undefined if the device does not exist.

« Combined device/application lookup

[2.03]

Spec string format: hexa-decimal address, followed by a hash sign (#) , followed by the decimal
endpoint number, e.g. 00:1f:ee:00:11:22:33:44#3. Returns an Application instance or undefined if
the application does not exist

« Group lookup Spec string format: prefix “g:", followed by the group name, e.g. g:Entrance Lights.
The group name is set when the group is created via the ubisys app. Returns a Group instance or
undefined if the group does not exist.

« Group lookup by group ID Spec string format: prefix "g#:", followed by the group identifier, e.g.
g#:17. The group ID is an internal identifier assigned on group creation. It remains stable across
group renames or modifications (unless the group is deleted and recreated), Returns a Group
instance or undefined if the group does not exist.

« Scene lookup Spec string format: prefix “s:”, followed by the scene name, e.g. s:Entrance Lights
Off. The scene name is set when the scene is created via the ubisys app. Returns a Scene
instance or undefined if the scene does not exist.

« Scene lookup by scene ID Spec string format: prefix "s#:", followed by the scene identifier, e.g.
s#:7. The scene ID is an internal identifier assigned on scene creation. It remains stable across
scene renames or modifications (unless the scene is deleted and recreated), Returns a Scene
instance or undefined if the scene does not exist.

15.3.2. Interfaces and classes

15.3.2.1. Device

Represents a Zigbee device.

1 function getApplication(endpoint)

Throws:

TypeError endpoint is not an integer

RangeError endpoint is out of range (1..240)

Returns:
The Application instance on the specific endpoint.

90

1 function getIEEEAddress()

www.ubisys.de UblS\JS

Returns:

The 64-bit IEEE address as a string, with bytes separated by colons, e.g '00:1f:ee:00:11:22:33:44".

1 function getShortAddress()

Returns:
The 16-bit short address as an integer.

1 function getManufacturer()

Returns:
The manufacturer string, as specified in the Basic cluster.

1 function getVendor()

Returns:
The vendor string, as specified in the Basic cluster.

1 function getModel()

Returns:
The model string, as specified in the Basic cluster.

1 function type()

Returns: The fixed string “device”.

15.3.2.2. Application

1 function getProfile()

Returns:
The numerical profile identifier for this application.

1 function getType()

Returns:
The numerical type identifier for this application.

1 function getCluster(clusterId)

Obtain the cluster instance with the numerical clusterld.

91

[1.9.4]

www.ubisys.de UblS\JS

Parameters:
clusterld The numeric cluster id

Throws:

TypeError If the clusterld is not an integer
RangeError If the clusterld is not within the valid range (0..0xffff)

Returns:

The Cluster instance or undefined if the cluster is not known. Note that the basic cluster (0) is
currently not available.

1 function getOnOffCluster()

A convenience alias for getCluster(6).

1 function getLevelControlCluster()

A convenience alias for getCluster(8).

1 function getWindowCoveringCluster()

A convenience alias for getCluster(0x0102).

1 function getClientCluster(clusterId)

Obtain the client cluster instance with the numerical clusterld.

Parameters:
clusterld The numeric cluster id

Throws:

TypeError If the clusterld is not an integer

RangeError If the clusterld is not within the valid range (0..0xffff)

Returns:

The ClientCluster instance or undefined if the cluster is not known.

1 function getOnOffClientCluster()
Convenience alias for getClientCluster(0x00086).

92

www.ubisys.de UblS\JS

1 function getLevelControlClientCluster()

Convenience alias for getClientCluster(0x0008).

1 function getUbisysManagedInputClientCluster()

Convenience alias for getClientCluster(0xfc02).

1 function type()

[1.9.4]
Returns:
The fixed string “application”.
15.3.2.3. Group

[1.9.4]

Represents a Zigbee group.

1 function toString()

Returns:
A string representation of this group. Mainly used for debugging/logging. The exact format is
implementation-defined.

1 function getDescription()

Returns:
The user-assigned name/description of this group.

1 function id()

Returns:
The internal group id. Assignment is implementation-defined. The id remains stable if the group is
renamed, but not if the group is removed and re-created.

1 function address()

Returns:
The group address of this group.

1 function type()

93

www.ubisys.de UblS\JS

Returns:
The fixes string “group”.

1 function members()

Returns:
An array of Application instances which represent the group members.

1 function getCluster(clusterId)

Obtain the cluster instance with the numerical clusterld.
Parameters:

clusterld The numeric cluster id
Throws:
TypeError If the clusterld is not an integer

RangeError If the clusterld is not within the valid range (0..0xffff)

Returns:

The cluster instance or undefined if the cluster is not known. Note that due to the nature of groups,
the returned cluster instance only supports issuing commands, not retrieving or monitoring attributes,
as they are tied to a specific device/application instance.

1 function getOnOffCluster()
A convenience alias for getCluster(6).
1 function getLevelControlCluster()

A convenience alias for getCluster(8).

1 function getWindowCoveringCluster()

A convenience alias for getCluster(0x0102).

15.3.2.4. Scene

Represents a Zigbee scene.

1 function recall(transitionTime)

94

www.ubisys.de UblS\JS

Recalls the scene, i.e. requests to set all scene attributes to there stored state.
Parameters:

transitionTime Optional. The transition time to use when applying the scene in seconds
(internal resolution is 100ms).

1 function toString()

Returns:
A string representation of this scene. Mainly used for debugging/logging. The exact format is
implementation-defined.

1 function type()

[19.4]

Returns:
The fixed string “scene”.

1 function getDescription()

Returns:
The user-assigned name/description of this scene.

15.3.2.5. Cluster

1 function command(command, payload, callback)

Send an arbitrary ZCL command to the cluster. Can be used to assemble custom commands for
which no wrappers are available. Only commands directed to the cluster are supported. No profile-
wide commands and no manufacturer-specific commands are supported.

Parameters:

command The numerical command to send. The meaning of the command is defined by the
cluster.

payload The command payload to send. Optional. May be any of the supported buffer
instances (see Section 15.4).

callback The callback to invoke on completion of the command. Will be invoked with a
ZigBeeStatus instance (see 0) as the only parameter.

Throws:

% www.ubisys.de UblS\JS

TypeError Invalid types for command, payload or callback.

RangeError command out of range

1 function getAttribute(attributeId)

Obtains a cached attribute. The set of cached attributes is specified in Section 15.3.3)
Parameters:

attributeld The numerical Id of the attribute

Throws:

TypeError attributeld is not an integer

RangeError attributeld is out of range (0..0xffff)

Returns:
The attribute instance or undefined if the attribute was not found.

1 function onAttributeChanged(attributelId, callback)

Registers a function to be called whenever the given attribute changes. Note that this only works for
reportable attributes and for devices which support reporting (see Section 15.3.3). The function will
be invoked with the attributeld as the first parameter, an attribute instance (5.2.2.7) as the second
parameter.

Parameters:

attributeld The numerical Id of the attribute

callback The function to invoke
Throws:
TypeError attributeld is not an integer or callback is not a function

RangeError attributeld is out of range (0..0xffff)

1 function readAttribute(attributelId, callback)

Sends a ZCL “Read Attributes” request to the cluster and delivers the result to the callback function.
The callback function will be invoked with a ZigBeeStatus instance as the first parameter and, on
success, with an attribute instance as the second parameter.

96

www.ubisys.de UblS\JS

Parameters:

attributeld The numerical Id of the attribute

callback The function to invoke to deliver the result
Throws:
TypeError attributeld is not an integer or callback is not a function

RangeError attributeld is out of range (0..0xffff)

1 function writeAttribute(attributeId, type, data, callback)

Sends a ZCL "Write Attribute" request to the cluster and delivers the result to the callback function.
The callback function will be invoked with a ZigBeeStatus instance as the only parameter.

Parameters:

attributeld The numerical Id of the attribute

type The type of the attribute to write; either numeric or as a string alias
data The data to write
callback The function to invoke to deliver the result
Throws:
TypeError If the attributeld is not an integer or the callback is not callable; if the type is

neither a number nor a string

RangeError If the attributeld is not within the valid range (0..0xffff) or if the numerical
attribute type is not within the valid range (0..0xff)

Error If the attribute data could not be parsed or the attribute type alias is unknown.

Supported types and payloads are as follows:

97

www.ubisys.de UblS\JS

Type Alias ZCL type Payload

data8 0x08 hex string of matching length. Alternatively any Buffer object.

data16 0x09

data24 0x0a

data32 0x0b

data40 0x0c

data48 0x0d

datab6 0x0e

data64 0x0f

bool, boolean 0x10 false, "false", 0, true, "true", non-zero integer

bitmap8 0x18 Either a number, a hex string or a binary string. For the string representation, the number of

bitmap16 ox19 digits must match the bitmap size, e.g. 16 binary digits or four hex digits for bitmap16.

bitmap24 Ox1a

bitmap32 Ox1b

bitmap40 Ox1c

bitmap48 Ox1d

bitmap56 Oxle

bitmap64 ox1f

unsigned8 0x20 Number. Be aware of the limited precision JavaScript offers for unsigned56 and unsigned64

unsigned16 0x21 '(internal double-precision floating point representation). Consider using a Buffer object
instead.

unsigned24 0x22

unsigned32 0x23

unsigned40 0x24

unsigned48 0x25

unsigned56 0x26

unsigned64 0x27

signed8 0x28 Number. Be aware of the limited precision JavaScript offers for signed56 and signed64

signed16 0x29 .(internal double-precision floating point representation). Consider using a Buffer object
instead.

signed24 O0x2a

signed32 0x2b

signed40 0x2¢

signed48 Ox2d

signed56 Ox2e

signed64 ox2f

enum8, enumeration8 0x30 Number

enum16, 0x31

enumeration16

raw, rawdata 0x41 hex string or any Buffer object

array 0x48

The type may be specified as a number as well. The payload for any type may be given as a Buffer
object. Valid buffer types are Duktape buffers, Node.js-like buffers and ES2015 ArrayBuffers, e.g. an
Uint8Array. Please refer to section Section 15.4.

Be aware that when passing a Buffer object, no constraints will be enforced. This may result in invalid
ZCL requests being sent, e.g. a write request for an Unsigned8 with a payload of multiple bytes.

By specifying the type as a numeric value and the payload as a Buffer, any ZCL attribute type can be
written; not only those listed in the table above.

1 function type()

98

www.ubisys.de UblS\Js

[1.9.4]

Returns:
The fixed string “cluster”.

15.3.2.6. OnOffCluster

Specialization of cluster for the On/Off cluster. Provides all functions of the generic cluster,
augmented by specialized functions for the On/Off cluster.

1 function off(callback)

Sends an “off” command to the cluster.
Parameters:
callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.
Throws:

TypeError callback is specified, but not a function

1 function on(callback)

Sends an “on” command to the cluster.
Parameters:
callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.
Throws:

TypeError callback is specified, but not a function

1 function toggle(callback)

Sends an “toggle” command to the cluster.
Parameters:

callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.

Throws:

% www.ubisys.de UblS\JS

TypeError callback is specified, but not a function

1 function onOnOffChanged(callback)

Registers a function to be called when the On/Off state changes. Called with a bool value as its only
parameter or undefined if the status is not available.

Throws:

TypeError callback is not a function

1 function isOn()

Returns:
The current On/Off status as a bool (true/false) or undefined if not available.

15.3.2.7. LevelControlCluster

Specialization of cluster for the Level Control cluster.

1 function moveToLevel(level, ttime, callback)

Moves to the specified level with the specified transition time.

Parameters:
level The level to move to (0..254)
ttime Transition time in units of 0.1 seconds.

callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.

Throws:

TypeError level/ttime are not integers. callback is specified, but not callable.

RangeError level (0..254) or ttime (0..65535)

1 function stepDown(stepSize, ttime, callback)
Steps down by the specified step size in the specified transition time.

Parameters:

100

www.ubisys.de UblS\JS

stepSize The step size (0..254)
ttime Transition time in units of 0.1 seconds.

callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.

Throws:
TypeError level/ttime are not integers. callback is specified, but not callable.

RangeError stepSize (0..254) or ttime (0..65535)

1 function stepUp(stepSize, ttime, callback)

Steps up by the specified step size in the specified transition time.
Parameters:

stepSize The step size (0..254)
ttime Transition time in units of 0.1 seconds.

callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.

Throws:
TypeError level/ttime are not integers. callback is specified, but not callable.

RangeError stepSize (0..254) or ttime (0..65535)

1 function stop(callback)

Stops any pending move to level, move or step command.
Parameters:

callback Optional. The function to invoke on completion of this command. Will be invoked
with a ZigBeeStatus instance as its parameter.

Throws:

TypeError callback is specified, but not callable.

101

www.ubisys.de UblS\JS

1 function moveToLevelWithOnOff(level, ttime, callback)

Same as moveToLevel(), but affects the On/Off state of any linked On/Off cluster.

1 function stepDownWithOnOff(stepSize, ttime, callback)

Same as stepDown(), but affects the On/Off state of any linked On/Off cluster.

1 function stepUpWithOnOff(stepSize, ttime, callback)

Same as stepUp(), but affects the On/Off state of any linked On/Off Cluster.

1 function onLevelChanged(callback)

Registers a function to be called when the level changes. The function will be invoked with a numeric
level as the parameter, or undefined if unknown or invalid.

Parameters:

callback The function to invoke.

Throws:

TypeError callback is not callable.

1 function getLevel()

Returns:
The current level as an integer or undefined if not available.

15.3.2.8. WindowCoveringCluster

Specialization of cluster for the Window Covering cluster.

1 function up(callback)

Starts moving the Window Covering device towards the up/open position.
Parameters:

callback Optional. The function to invoke to deliver the result of the operation.

Throws:

102 www.ubisys.de UblS\JS

TypeError callback is specified, but not callable.

1 function open(callback)

Alias for up().

1 function down(callback)

Starts moving the Window Covering device towards the down/closed position.
Parameters:

callback Optional. The function to invoke to deliver the result of the operation.

Throws:

TypeError callback is specified, but not callable.

1 function close(callback)

Alias for down().

1 function stop(callback)

Stops the movement of the Window Covering device.
Parameters:

callback Optional. The function to invoke to deliver the result of the operation.

Throws:

TypeError callback is specified, but not callable.

1 function gotoLiftValue(liftValue, callback)

Moves the Window Covering device to the specified lift value (in centimeters). The lift value must be
in the range given by the InstalledOpenLimitLift (0x0010) and InstalledClosedLimitLift (0x0011)
attributes. If the value is outside this range, the device shall report an error, which will be delivered to
the callback function as a ZigBeeStatus instance representing the ZCL:INVALID_VALUE error. No
RangeError is thrown in this case, as the verification is done on the device. This is an optional
command, which may not be implemented by all devices. The device shall report an unsupported
command and the callback would be invoked with a ZigBeeStatus instance representing the failure
(ZCL: UNSUP_CLUSTER_COMMAND).

103

www.ubisys.de UblS\JS

Parameters:

liftValue The lift value to move to.

callback Optional. The function to invoke to deliver the result of the operation.

Throws:

TypeError callback is specified, but not callable; liftValue is not an integer.

RangeError liftValue is outside the valid range (0..0xffff)

1 function gotoLiftPercentage(liftPercentage, callback)

Moves the Window Covering device to the specified lift percentage. This is an optional command,
which may not be implemented by all devices. The device shall report an unsupported command and
the callback would be invoked with a ZigBeeStatus instance representing the failure (ZCL:
UNSUP_CLUSTER_COMMAND).

Parameters:

liftPercentage The lift percentage to move to.

callback Optional. The function to invoke to deliver the result of the operation.
Throws:
TypeError callback is specified, but not callable; liftPercentage is not an integer.

RangeError liftPercentage is outside the valid range (0..100)

1 function gotoTiltValue(tiltValue, callback)

Moves the Window Covering device to the specified tilt value. The lift value must be in the range
given by the InstalledOpenLimitTilt (0x0012) and InstalledClosedLimitTilt (0x0013) attributes. If the
value is outside this range, the device shall report an error, which will be delivered to the callback
function as a ZigBeeStatus instance representing the ZCL:INVALID_VALUE error. No RangeError is
thrown in this case, as the verification is done on the device. This is an optional command, which may
not be implemented by all devices. The device shall report an unsupported command and the callback
would be invoked with a ZigBeeStatus instance representing the failure (ZCL:
UNSUP_CLUSTER_COMMAND).

Parameters:

104

www.ubisys.de UblS\JS

tiltvalue The lift value to move to (0..900), in units of 0.1 degrees, corresponding to 0..90
degrees.

callback Optional. The function to invoke to deliver the result of the operation.

Throws:

TypeError callback is specified, but not callable; liftValue is not an integer.

RangeError liftValue is outside the valid range (0..0xffff)

1 function gotoTiltPercentage(tiltPercentage, callback)

Moves the Window Covering device to the specified tilt percentage. This is an optional command,
which may not be implemented by all devices. The device shall report an unsupported command and
the callback would be invoked with a ZigBeeStatus instance representing the failure (ZCL:
UNSUP_CLUSTER_COMMAND).

Parameters:

tiltPercentage The lift percentage to move to.

callback Optional. The function to invoke to deliver the result of the operation.
Throws:
TypeError callback is specified, but not callable; tiltPercentage is not an integer.

RangeError tiltPercentage is outside the valid range (0..100)

15.3.2.9. ClientCluster

Represents a zigbee client cluster and allows registering callback functions for inbound commands.

1 function type()

Returns the fixed string "clientcluster".

1 function on(command, callback)

Registers a handler for the given command. The command may be given as a numeric value. For
several clusters, string aliases are defined as per the table below. Handlers for manufacturer-specific
commands must be given as a string in the form "manufacturer:command", whereas both
manufacturer and command are to be encoded as hexadecimal, e.g. "10f2:1". The ubisys
manufacturer code 10f2 may be given as "ubisys" as well.

105

www.ubisys.de UblS\JS

The callback will be invoked with the command payload, which is provided as an object. The object
always contains the field raw, which contains the unparsed command payload as bytes, stored in a
Buffer object. For certain commands (as per table below), the payload is parsed and provided as a
parsed representation.

Throws:
TypeError callback is not callable
RangeError command is out of the allowed range (0..255)
Error unknown command alias

The following command aliases are defined and payloads are parsed:

Cluster

Command

Parsed payload fields

On/Off

off

on

toggle

Level Control

move-to-level

level

transition-time

options-mask

options-override

move

move-mode

rate

options-mask

options-override

step

step-mode

step-size

transition-time

options-mask

options-override

stop

move-to-level-with-on-off

level

transition-time

options-mask

options-override

move-with-on-off

move-mode

rate

options-mask

options-override

step-with-onoff

step-mode

step-size

transition-time

options-mask

options-override

stop-with-onoff

ubisys managed input ubisys:switch-latched position
ubisys:initial-press position
ubisys:long-press position
ubisys:short-release position

106

www.ubisys.de

ubisys

Cluster Command Parsed payload fields

ubisys:long-release position

15.3.2.10. Attribute
Supported data types (with mappings to Java types):

o« Null

« Bool

« Unsigned integer (all widths)
. Signed integer (all widths)

» CharacterString

« Bitmap (all widths)

More types will be added in a future revision.

1 function id()

Returns:
The numerical Id of the represented attribute.

1 function type()

Returns:
The decoded, human-readable attribute type as a string.

1 function rawType()

Returns:
The numerical type of the attribute.

1 function value()

Returns:
The decoded attribute value or undefined it this type is not (yet) supported.

Null is mapped to null. Bool is mapped to true/false or undefined (for the invalid value).
Signed/unsigned integer types are mapped to numbers or undefined (for the invalid value). A
CharaterString is mapped to a String. A Bitmap will be mapped to a String consisting of binary digits
for each bit. For bitmap types, the testBit() function is provided.

1 function toString()

Returns:
String representation of this attribute. Mainly for debugging/logging.

107

www.ubisys.de UblS\JS

1 function testBit(index)

Parameters:

index The bit index to test

Returns:
true if the bit is set, false if unset.
Throws:

TypeError index is not an integer or the attribute is not of a Bitmap type

RangeError index exceeds the Bitmap width

15.3.2.11. ZigbeeStatus

Represents the outcome of a ZigBee/ZCL Request. Passed to the callback functions for a ZCL
Request.

1 function success()

Returns:
true if the operation was successful, false otherwise.

1 function toString()

Returns:
A string representation with a brief error description or "success".

15.3.3. Cached Attributes

The following attributes are available via getAttribute() in the cluster interface. Attributes marked as
“‘reportable” are configured for reporting. The gateway will therefore automatically receive updates for
these attribute. Notifications can be requested via the onAttributeChanged function in cluster. Please
not that there are devices (e.g. Philips Hue) which do not support reporting. Attributes marked as
“static” are usually read once and not updated automatically.

15.3.3.1. Power Configuration Cluster (0x0001)

Id Name Type
0x0000 Mains Voltage static
0x0001 Mains Frequency static
0x0010 Mains Alarm Mask static
0x0020 Battery Voltage static
0x0021 Battery Percentage Remaining reported
0x0031 Battery Size static
108

www.ubisys.de UblS\JS

Id Name Type
0x0033 Battery Quantity static
0x0034 Battery Rated Voltage static
0x0035 Battery Alarm Mask static
0x0036 Battery Voltage Minimum Threshold static
0x0037 Battery Voltage Threshold 1 static
0x0038 Battery Voltage Threshold 2 static
0x0039 Battery Voltage Threshold 3 static
0x003a Battery Percentage Minimum Threshold static
0x003b Battery Percentage Threshold 1 static
0x003c Battery Percentage Threshold 2 static
0x003d Battery Percentage Threshold 3 static
0x003e Battery Alarm State reported
15.3.3.2. On/Off Cluster (0x0006)

Id Name Type
0x0000 On/Off reported
0x4003 Start-Up On/Off static
15.3.3.3. On/Off Switch Configuration (0x0007)

Id Name Type
0x0000 Switch Type static
0x0000 Switch Type static
0x0010 Switch Actions static
0x0020 Multiple Switch Function Profile static
0x0021 Multiple Switch Profile Parameter 1 static
0x0022 Multiple Switch Profile Parameter 2 static
0x0023 Multiple Switch Profile Parameter 3 static
15.3.3.4. Level Control Cluster (0x0008)

Id Name Type
0x0000 Current Level reported
0x000f Options static
0x0010 On/Off Transition Time static
0x0011 On Level static
0x0012 On Transition Time static
0x0013 Off Transition Time static
0x0014 Default Move Rate static
0x4000 Start-Up Current Level static
15.3.3.5. OTA Upgrade (0x0019)

Id Name Type
0x0000 Upgrade Server ID static
0x0001 File Offset static
0x0002 Current File Version static
0x0003 Current ZigBee Stack Version static
0x0007 Manufacturer ID static
0x0008 Image Type ID static
109

www.ubisys.de Ubl&JS

15.3.3.6. Poll Control (0x0020)

Id Name Type
0x0000 Check-In Interval static
0x0001 Long Poll Interval static
0x0002 Short Poll Interval static
0x0003 Fast Poll Timeout static
0x0004 Check-In Interval Minimium static
0x0005 Long Poll Interval Minimium static
0x0006 Fast Poll Timeout Maximum static
110

www.ubisys.de UblSlJS

15.3.3.7. Door Lock (0x0101)

Id Name Type
0x0000 Lock State reported
0x0001 Lock Type static
0x0002 Actuator Enabled static
0x0003 Door State reported
0x0004 Door Open Events static
0x0005 Door Closed Events static
0x0006 Open Period static
0x0010 Number Of Log Records Supported static
0x0011 Number Of Total Users Supported static
0x0012 Number Of PIN Users Supported static
0x0013 Number Of RFID Users Supported static
0x0014 Number Of Week Day Schedules Supported Per User static
0x0015 Number Of Year Day Schedules Supported Per User static
0x0016 Number Of Holiday Schedules Supported static
0x0017 Maximum PIN Code Length static
0x0018 Minimum PIN Code Length static
0x0019 Maximum RFID Code Length static
0x001a Minimum RFID Code Length static
0x0020 Enable Logging static
0x0021 Language static
0x0022 LED Settings static
0x0023 Auto Relock Time static
0x0024 Sound Volume static
0x0025 Operating Mode reported
0x0026 Supported Operating Mode static
0x0027 Default Configuration Register static
0x0028 Enable Local Programming static
0x0029 Enable One Touch Locking static
0x002a Enable Inside Status LED static
0x002b Enable Privacy Mode Button static
0x0030 Wrong Code Entry Limit static
0x0031 User Code Temporary Disable Time static
0x0032 Send PIN Over The Air static
0x0033 Require PIN For RF Operation static
0x0034 Security Level reported
0x0040 Alarm Mask static
0x0041 Keypad Operation Event Mask static
0x0042 RF Operation Event Mask static
0x0043 Manual Operation Event Mask static
0x0044 RFID Operation Event Mask static
0x0045 Keypad Programming Event Mask static
0x0046 RF Programming Event Mask static
0x0047 RFID Programming Event Mask static
15.3.3.8. Window Covering Cluster (0x0102)

Id Name Type
0x0000 Window Covering Type static
0x0000 Window Covering Type static
0x0007 Config/Status static
111

www.ubisys.de UblS\JS

Id Name Type
0x0007 Config/Status static
0x0008 Current Position Lift Percentage reported
0x0009 Current Position Tilt Percentage reported
0x000a Operational Status reported
0x0010 Installed Open Limit - Lift static
0x0010 Installed Open Limit - Lift static
0x0011 Installed Closed Limit - Lift static
0x0011 Installed Closed Limit - Lift static
0x0012 Installed Open Limit - Tilt static
0x0012 Installed Open Limit - Tilt static
0x0013 Installed Closed Limit - Tilt static
0x0013 Installed Closed Limit - Tilt static
0x0017 Mode static
0x1000 Turn-Around Guard Time static
0x1001 Lift-To-Tilt Transition Step 1 static
0x1002 Total Step 1 static
0x1003 Lift-To-Tilt Transition Step 2 static
0x1004 Total Step 2 static
0x1005 Additional Steps static
15.3.3.9. Thermostat (0x0201)

Id Name Type
0x0000 Local Temperature reported
0x0001 Outdoor Temperature static
0x0002 Occupancy reported
0x0003 Absolute Minimum Heating Setpoint Limit static
0x0004 Absolute Maximum Heating Setpoint Limit static
0x0005 Absolute Minimum Cooling Setpoint Limit static
0x0006 Absolute Maximum Cooling Setpoint Limit static
0x0007 PI Cooling Demand reported
0x0008 Pl Heating Demand reported
0x0009 HVAC System Type Configuration static
0x0010 Local Temperature Calibration static
0x0011 Occupied Cooling Setpoint reported
0x0012 Occupied Heating Setpoint reported
0x0013 Unoccupied Cooling Setpoint reported
0x0014 Unoccupied Heating Setpoint reported
0x0015 Minimum Heating Setpoint Limit static
0x0016 Maximum Heating Setpoint Limit static
0x0017 Minimum Cooling Setpoint Limit static
0x0018 Maximum Cooling Setpoint Limit static
0x0019 Minimum Setpoint Dead Band static
0x001a Remote Sensing static
0x001b Control Sequence Of Operation static
0x001c System Mode reported
0x001d Alarm Mask static
0x001e Thermostat Running Mode reported
0x0034 Occupied Setback static
0x0035 Occupied Setback Minimum static
0x0036 Occupied Setback Maximum static
112

www.ubisys.de UblSlJS

Id Name Type
0x0037 Unoccupied Setback static
0x0038 Unoccupied Setback Minimum static
0x0039 Unoccupied Setback Maximum static
0x003a Emergency Heat Delta static
15.3.3.10. Fan Control (0x0202)

Id Name Type
0x0000 Fan Mode reported
0x0001 Fan Mode Sequence static
15.3.3.11. Color Control Cluster (0x0300)

Id Name Type
0x0000 Current Hue reported
0x0001 Current Saturation reported
0x0003 Current X reported
0x0004 Current Y reported
0x0007 Current Temperature Mireds reported
0x0008 Color Mode static
0x000f Options static
0x0010 Number Of Primaries static
0x0011 Primary 1X static
0x0012 Primary 1Y static
0x0013 Primary 1 Intensity static
0x0015 Primary 2X static
0x0016 Primary 2Y static
0x0017 Primary 2 Intensity static
0x0019 Primary 3X static
0x001a Primary 3Y static
0x001b Primary 3 Intensity static
0x0020 Primary 4X static
0x0021 Primary 4Y static
0x0022 Primary 4 Intensity static
0x0024 Primary 5X static
0x0025 Primary 5Y static
0x0026 Primary 5 Intensity static
0x0028 Primary 6X static
0x0029 Primary 6Y static
0x002a Primary 6 Intensity static
0x4000 Enhanced Current Hue static
0x4001 Enhanced Color Mode static
0x4002 Color Loop Active static
0x4003 Color Loop Direction static
0x4004 Color Loop Time static
0x4005 Color Loop Start Enhanced Hue static
0x4006 Color Loop Stored Enhanced Hue static
0x400a Color Capabilities static
0x400b Color Temperature Physical Minimum Mireds static
0x400c Color Temperature Physical Maximum Mireds static
0x400d Couple Color Temperature To Level Minimum Mireds static
113

www.ubisys.de Ubl&JS

Id Name Type
0x4010 Start-Up Color Temperature Mireds static
15.3.3.12. Ballast Configuration (0x0301)

Id Name Type
0x0000 Physical Minimum Level static
0x0001 Physical Maximum Level static
0x0010 Minimum Level static
0x0011 Maximum Level static
15.3.3.13. llluminance Measurement (0x0400)

Id Name Type
0x0000 Measured Value reported
0x0001 Minimum Measured Value static
0x0002 Maximum Measured Value static
0x0003 Tolerance static
0x0004 Light Sensor Type static
15.3.3.14. llluminance Level Sensing (0x0401)

Id Name Type
0x0000 Level Status reportable
0x0001 Light Sensor Type static
0x0010 lluminance Target Level static
15.3.3.15. Temperature Measurement (0x402)

Id Name Type
0x0000 Measured Value reported
0x0001 Minimum Measured Value static
0x0002 Maximum Measured Value static
0x0003 Tolerance static
15.3.3.16. Relative Humidity Measurement (x0405)

Id Name Type
0x0000 Measured Value reported
0x0001 Minimum Measured Value static
0x0002 Maximum Measured Value static
0x0003 Tolerance static
15.3.3.17. Occupancy Sensing (0x0406)

Id Name Type
0x0000 Occupancy reported
0x0001 Occupancy Sensor Type static
0x0002 Occupancy Sensor Type Bitmap static
0x0010 PIR Occupied To Unoccupied Delay static
0x0011 PIR Unoccupied To Occupied Delay static
0x0012 PIR Unoccupied To Occupied Threshold static
0x0020 Ultrasonic Occupied To Unoccupied Delay static
114

www.ubisys.de

ubisys

Id Name Type
0x0021 Ultrasonic Unoccupied To Occupied Delay static
0x0022 Ultrasonic Unoccupied To Occupied Threshold static
0x0030 Physical Contact Occupied To Unoccupied Delay static
0x0031 Physical Contact Unoccupied To Occupied Delay static
0x0032 Physical Contact Unoccupied To Occupied Threshold static
15.3.3.18. Leaf Wetness (0x0407)

Id Name Type
0x0000 Measured Value reported
0x0001 Minimum Measured Value static
0x0002 Maximum Measured Value static
0x0003 Tolerance static
15.3.3.19. Soil Moisture (0x0408)

Id Name Type
0x0000 Measured Value reported
0x0001 Minimum Measured Value static
0x0002 Maximum Measured Value static
0x0003 Tolerance static
15.3.3.20. IAS Zone Cluster (0x0500)

Id Name Type
0x0000 Zone State static
0x0001 Zone Type static
0x0002 Zone Status reported
0x0010 IAS CIE Address static
0x0011 Zone ID static
0x0012 Number Of Zone Sensitivity Levels Supported static
0x0013 Current Zone Sensitivity Level static
15.3.3.21. IAS WD Cluster (0x0502)

Id Name Type
0x0000 Max Duration static
15.3.3.22. Metering (0x0702)

Id Name Type
0x0000 Current Summation Delivered reported
0x0200 Meter Status static
0x0300 Unit Of Measure static
0x0301 Multiplier static
0x0302 Divisor static
0x0306 Metering Device Type static
0x0400 Instantaneous Demand reported
115

www.ubisys.de Ubl&JS

15.3.3.23. Device Setup (0xfc00)

Id Name Type
0x0000 Input Configurations static
0x0001 Input Actions static

15.3.3.24. Dimmer Setup (0xfc01)

Id Name Type
0x0000 Capabilities static
0x0001 Status static
0x0002 Mode static

15.4. Buffer Support

Duktape internally provides support for various buffer types. Any of those may be used where a buffer
instance is required, e.g. cluster.sendCommand (). The most useful is probably the implementation
resembling the node.js Buffer class.

The following example manually assembles the payload for a step command (2) to the Level Control
cluster and sends the command to the cluster. The payload format is as following:

Size 1 1 2
Content Step mode Step size Transition time
Value 0 (up) 10 10

1 // Allocate a buffer of 4 bytes

2 var buffer = new Buffer(4);

3

4 // Offset 0: Step mode: 0

5 buffer.writeUInt8(0, 0);

6 // Offset 1: Step size: 10

7 buffer.writeUInt8(10, 1);

8 // Offset 2: Transition time: 10 (16 bit)

9 buffer. writeUIntl16LE(10, 2);

10

11 // Send the command and print the status

12 clusterLevel.command(2, buffer, function(status)

13 {

14 print('Result:', status);

15 };
References :

Node.js Buffer Object https://nodejs.org/api/buffer.html
Duktape Buffer APIs https://github.com/svaarala/duktape/blob/master/doc/buffers.rst

ES2015 ArrayBuffer https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/ArrayBuffer

116

www.ubisys.de UblS\JS

https://nodejs.org/api/buffer.html
https://github.com/svaarala/duktape/blob/master/doc/buffers.rst
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer

15.5. Push Notification API

1 var Push = require('builtin/push');

Allows sending push notifications to mobile devices:

1 function submitNotification(message)

Parameters:

message The message to push to mobile devices

1 function submitNotification(message, title)

Parameters:

message The message to push to mobile devices

1 function onStatusChange(attributeID, attribute)

2 {

3 print('IAS Zone status changed to ', attribute);

4

5 if (attribute.testBit(0))

6 {

7 Push.submitNotification('Door contact reports',6 'Main door opened');
8 b

9 else
10 {
11 Push.submitNotification('Door contact reports',6 'Main door closed');
12 }
13 }

15.6. Global variables

1 var Globals = require('sys/globals');

Allows to store and retrieve gateway-global variables and to send messages to other scripts. This can
e.g. be used to implement some kind of state synchronization and simple communication facilities
between independent scripts on the same gateway.

No concept of ownership or access control exists, i.e. any script can write to any variable.

1 function set(name, value)

Parameters:

117

www.ubisys.de UblS\JS

name The name of the global variable to set

value The value to set. This can be an arbitrary JavaScript value, e.g. a number, string, array
or object. No functions can be stored.

1 function get(name)

Parameters:
name The name of the global variable to retrieve
Returns the value of the function or undefined if no such variable was set.

1 function onChange(name, callback)

Parameters:

name The name of the global variable to monitor

callback The function to invoke whenever the global variable changes. This will be invoked
with the name and value as parameters.

Throws:

TypeError the callback is not callable

1 function send(topic, payload)

Allows sending of messages to specific topics. Any script listening to this topic will receive the
message. A message payload can be of an arbitrary JavaScript type with the exception of functions,
e.g. a string, number, bool or an object.

Parameters:

topic The topic to send the message to

payload The message payload

1 function listen(topic, callback)

Allows listening for messages on a specific topic. The callback function will be invoked for each
message sent for this specific topic.

Parameters:

118

www.ubisys.de UblS\JS

topic The topic to listen to

payload The callback to invoke. The callback will receive the message payload as a
parameter.

Throws:

TypeError the callback is not callable

15.7. HTTP Client API
1 var Http = require('sys/http');
15.7.1. Exported functions
Allows a script to send HTTP requests to an external HTTP server.

1 function request()

Creates a new HttpRequest instance.

1 new FormData()

Creates a new FormData instance to create multipart/form-data POST payloads.
15.7.2. Classes
15.7.2.1. HttpRequest

Represents an outgoing Http request to be sent.

1 function method(string)

Allows to set the HTTP request method. Supported methos are GET, POST, PUT and HEAD.
Defaults to GET if not invoked.

Throws:

Error Aninvalid request method was given.

Error The request was already sent.

1 function url(string)

Sets the request URL. Supported URI schemes are http and https.

119

www.ubisys.de UblS\JS

Throws:

Error The request was already sent.

1 function useragent(string)

Sets the user agent header to the given string.
Throws:

Error The request was already sent.

1 function failOnHttpError(bool)

If set to true, a HTTP 4xx or 5xx response will cause an error. Defaults to false, i.e. an HTTP response
is always considered success, no matter the response status. In this case, the script has to explicitely
check the HTTP response status.

Throws:

Error The request was already sent.

1 function header(header, value)

Sets an HTTP request header.
Throws:

Error The request was already sent.

1 function username(string)

Sets the username to be used for HTTP authentication. Supported authentication schemes are Basic,
Digest and NTLM.

Throws:

Error The request was already sent.

1 function password()

Sets the password to be used for HTTP authentication. Supported authentication schemes are Basic,
Digest and NTLM.

120

www.ubisys.de UblS\JS

Throws:

Error The request was already sent.

1 function postData(data, type)

Sets the data to be sent as the POST request payload.

Valid values for type are:
o raw

The provided data is sent as-is. The data must either be of type string or Buffer.
« formdata

The data must be a key-value map and will be encoded as application/x-www-form-urlencoded.
Alternatively, an already encoded string may be passed.

. jSON

The provided data is a JavaScript object to be encoded as JSON.

Throws:
Error The request was already sent.
Error postData() was invoked for a non-POST request.

TypeError a parameter is of an incorrect type.

1 function formData(data)

Provides a FormData instance to be sent as the POST request payload.

Throws:
Error The request was already sent.
Error formData() was invoked for a non-POST request.

TypeError The passed data is not a FormData instance

1 function verifyPeer(bool)

Set to false to disable verification of the server's TLS/x509 certificate. Defaults to true (i.e. verify).
Only applicable to https URIs.

121 www.ubisys.de UblS\JS

Throws:

Error The request was already sent.

1 function verifyHost()

Set to false to disable verification of the server's hostname in the server-provided TLS/x509
certificate. Defaults to true (i.e. verify). Only applicable to https URIs.

Throws:

Error The request was already sent.

1 function verifyCertificateTime(bool)

Set to false to disable verification of the server's TLS/x509 certificate validity time. Defaults to true
(i.e. verify). Only applicable to https URIs.

Throws:

Error The request was already sent.

1 function onCompleted(callback, response_type)

response_type must be either string or json and determines how the response payload should be
parsed and provided.

The callback should have the signature function(status, response, payload). Status will either be
success or error. In case json was set as the response type, an additional parse error is possible if the
payload could not be parsed as JSON. response will be an instance of HttpResponse. The payload is
either a string or an JSON object if response_type was specified as json. In case of a JSON parse
error, it contains the parse failure as a string.

Throws:

Error The request was already sent.

TypeError callback not callable or invalid reponse_type

1 function execute()

Sends a previously prepared request. No further modifications are possible. The callback provided to
onCompleted() will be invoked on completion.

122

www.ubisys.de UblS\JS

15.7.2.2. FormData

Encapsulates multipart/form-data to be sent via the HTTP POST request payload.

1 function addContent(name, data, contentType)

Adds an element to the FormData instance with the given name. data must either be a string or a
Buffer instance. contentType is optional and will default to application/octet-stream if unspecified.

1 function addFileContent(name, filename, data, contentType)

Adds a file element to the FormData instance with the given name. data must either be a string or a
Buffer instance. contentType is optional and will default to application/octet-stream if unspecified.

15.7.3. HttpResponse
1 function status()
Obtains the HTTP response status code.

1 function header(name)

Returns the HTTP response header with the specified name or undefined if no such header exists.
15.8. HTTP Server API

1 var HttpServer = require('sys/httpserver');
15.8.1. Exported functions
Allows registering a handler to let a script server HTTP requests:

1 function registerHandler(path, callback, options)

Parameters:

path The URL suffix to register the handler for

callback The function to be invoked to handle a request. The function will be invoked with
the HttpRequest instance as the parameter.

options Optional handler options

The handler will be accessible via Http with the prefix /ws/, e.g. http://hostname/ws/path.

123

www.ubisys.de UblS\JS

http://hostname/ws/path

e By default, no access control is enforced.

If provided, options must be given as an object.
Defined options:

require_scope Require a bearer token for authentication with the given scope. Introduced in
firmware version 4.1.

15.8.2. Classes

15.8.2.1. HitpRequest

Represents an incoming Http request to be handled.

1 function requestMethod()

Returns the Http request method as a string, e.g. GET or POST.

1 function requestHeader (header)

Allows to obtain an Http request header, e.g. an Authorization header. Returns the header value as a
string or undefined if the header is not present.

1 function urlParam(param)

Allows to obtain a parameter encoded in the request URL, i.e. via an ?key=value addition to the url.
Returns the parameter as string of undefined if the parameter is not present.

1 function postParam(param)

Allows to obtain a parameter for a POST request where the POST payload is encoded as
application/x-www-form-urlencoded. Returns the parameter as string or undefined if the parameter is
not present.

If the payload is encoded as application/json and is an object, returns the mapped value for the given
key. Return type is the type of the mapped value in this case.

1 function postParams()

Returns the POST payload.

In case of an application/x-www-form-urlencoded payload, this is an object with the received key-
value pairs.

In case of an application/json payload, this is the payload as received.

124

www.ubisys.de UblS\JS

1 function status(statusCode)

Sets the Http status code for the response. May only be called as long as neither write() nor
complete() was invoked. If not invoked, a status of 200 OK will be sent.

Throws:

Error Response headers were already sent, i.e. write() or complete() was invoked.

1 function header(header, value)

Sets a header on the response. The header name passed must be the bare header name, i.e. not
contain a trailing colon. May only be called as long as neither write() nor complete() was invoked.

Throws:

Error Response headers were already sent, i.e. write() or complete() was invoked.

1 function write(payload)

Writes the response payload. May be invoked multiple times, but only as long as complete() was not
invoked. After invoking write(), no status code or response header may be set anymore.

Throws:

Error Request was already completed via complete() and sent.

1 function complete(payload)

Indicates that the response was prepared and is to be sent. No further methods can be invoked on
this instance.

Throws:

Error Request was already completed via complete() and sent.

125

www.ubisys.de UblS\JS

16. Examples

16.1. Toggle a light every 5s seconds

The following is a minimal example to toggle a light (On/Off cluster) every 5 seconds. The timers and
zigbee modules are imported as Timer and ZigBee. A callback function is registered via
ZigBee.onReady() to be invoked once the ZigBee subsystem is initialized and devices can be looked-
up. The light device is looked-up by its address and the On/Off cluster on application #10 is
obtained. Finally, a periodic timer is created to execute the toggle() command on the Of/Off cluster
and the obtained status is printed into the log.

1 var Timer = require('sys/timers');
2 var ZigBee = require('sys/zigbee');
3

4 ZigBee.onReady(function()

5 {

6 // Get the light

7 var device = ZigBee.getDevice('00:21:2E:FF:FF:00:58:F1');
8 var onOff = device.getApplication(10).getOnOffCluster();
9

10 Timer.createPeriodicTimer('5s', function()

11 {

12 onOff.toggle(function(status)

13 {

14 print('toggle:', status);

15)i

16 1)

17 });

16.2. Control a light via a motion detector

The following example demonstrates how attributes can be evaluated to trigger further actions. The
“Occupancy” attribute of an occupancy sensor (motion detector) is evaluated and a light is switched
on whenever a motion is reported and switched off once no motion is detected anymore.

126 www.ubisys.de UblS\Js

1 var ZigBee = require('sys/zigbee');
2
3 // Will keep a reference to the kitchen light (the application instance)
4 var kitchenLight;
5
6 // called whenever the Occupancy attribute changes
7 function onOccupancyStateChange(attributeID, attribute) {
8 print('motion sensor value changed to', attribute);
9
10 if (attribute.testBit(0)) {
11 // Occupied, set level 192 (75%) within 1s (10 units of 0.1s each)
12 kitchenLight.getLevelControlCluster().moveToLevelWithOnOff(192, 10,
13 function (status) {
14 print('kitchen light turned on:', status)
15)i
16 } else {
17 kitchenLight.getOnOffCluster().off(function (status) {
18 print('kitchen light turned off:', status)
19)i
20 }
21 }
22
23 function setupKitchenLighting() {
24 // Get the kitchen light and store it in the global variable kitchenLight
25 kitchenLight = ZigBee.getDevice('00:1F:EE:00:00:00:01:A3").
26 getApplication(1);
27
28 // Get the motion sensor
29 var MotionSensor = ZigBee.getDevice('00:0D:6F:00:04:B1:0B:1F');
30 var occupancy = MotionSensor.getApplication(l).getCluster(0x0406);
31
32 // Register for attribute changes on attribute 0 (Occupancy, bitmap)
33 occupancy.onAttributeChanged(0x0000, onOccupancyStateChange);
34 }
35
36 ZigBee.onReady(function () {
37 setupKitchenLighting();
38 });

16.3. Write the StartUpOnOff attribute in the On/Off cluster

var zigbee = require('sys/zigbee');

1
2
3 zigbee.onReady(function() {

4 var endpoint = zigbee.lookup("00:1f:ee:00:00:70:95:09/1")
5 var onoff = endpoint.getOnOffCluster();

6

7

8

onoff.writeAttribute(0x4003, "enum8", O,
function(status) {
9 print("Write StartUpOnOff:", status);
10)i

127

www.ubisys.de UblS\JS

16.4. Control a light via an HTTP handler

1 var httpserver = require('sys/httpserver')
2 var zigbee = require('sys/zigbee')
3
4 var onoff;
5
6 zigbee.onReady(function() {
7 onoff = zigbee.lookup("00:1f:ee:00:00:00:95:09/1").getOn0OffCluster();
8
9 httpserver.registerHandler("/toggle",
10 function(request) {
11 // Handle http request: toggle the light
12 onoff.toggle(
13 function(status)
14 {
15 if (status.success())
16 {
17 // On success, return HTTP status 200 OK
18 request.status(200);
19 b
20 else
21 {
22 // On failure, return status 502 Bad Gateway and
23 // provide the error message.
24 request.status(502);
25 request.write(status.toString());

N NN
©® 9 o
(5}

// Complete the HTTP request and send the response
request.complete();

w N
o v

¥)8

w
e

IO¥

w
\S]

)

16.5. Send an HTTP request on button press

128

www.ubisys.de UblS\JS

1 var zigbee = require('sys/zigbee')
2 var http = require('sys/http');

4 function onToggle() {

5 // Send a POST request to http://10.0.8.10:8080/test with some payload and a
6 // bearer token for authentication

7 var request = http.request();

8 request.method("POST");

9 request.url("http://10.0.8.10:8080/test");
10 request.header("Authentication", "bearer 12345678901234567890");
11 request.postData({"keyl": "valuel", "test": 1234});
12 request.onCompleted(
13 // Invoked on completion of the request
14 function(status, response, payload)
15 {
16 print(status);
17 print(response);
18 print(payload);
19 }, "string");
20 // Request setup, now execute it
21 request.execute();
22 }
23
24 zigbee.onReady(function() {
25 var app = zigbee.lookup("01:52:00:45/1");
26 var onoff = app.getOnOffClientCluster();
27
28 // Invoke function onToggle() whenever a Toggle command on the On/Off
29 // cluster is received.
30 onoff.on('off', onToggle);
31 })

129

www.ubisys.de UblS\JS

17. Revision History

Revision Date Remarks

0.1 08/24/2021 Initial draft

0.2 08/26/2021 Added description in automations overview, bundle structure, bundle.info,
configuration.schema

0.3 09/02/2021 Updated automations overview, bundle structure, bundle.info, configuration.schema

0.4 09/03/2021 Updated configuration.schema, added information for zone level settings and filters

0.41 09/03/2021 Updated configuration.schema, added information for global/zone level settings

0.42 09/09/2021 Added attribute information in zone level settings

0.43 09/10/2021 Added/updated attribute information in zone level settings

0.44 09/10/2021 Updated overall structure and made the document more generic

0.45 09/13/2021 Added examples for each attribute

0.46 09/13/2021 Added examples for some attributes and customized examples

0.47 09/14/2021 Document restructured, added zone/global level settings information

0.48 09/14/2021 Updated the main example configuration.schema

0.49 09/16/2021 Updated the document structure, added initial description

0.50 09/17/2021 Added supported icons and the reference to the JavaScript documentation

0.51 09/20/2021 Added supported icons images from iOS app

2.0 02/02/2022 Added JavaScripts runtime part

2.1 02/22/2023 Added JavaScript documentation for globals and Http client/server

2.2 05/05/2023 Updated JavaScript documentation to G1 firmware v4.1

2.3 09/04/2023 Updated JavaScript documentation to G1 firmware v4.1.6

130

www.ubisys.de UblS\Js

18. Contact

ubisys technologies GmbH
Neumannstr. 10

40235 Disseldorf
Germany

T:+49.211.54 2155-19
F: +49.211.54 21 55 - 99

www.ubisys.de
info@ubisys.de

131

www.ubisys.de UblS\JS

www.ubisys.de
info@ubisys.de

	AUTOMATIONS DOCUMENTATION
	Table of Contents
	I: Automation template
	1. Overview
	2. Automations overview
	3. Guidelines for automation template bundle
	4. bundle-info.json
	4.1. id
	4.2. category
	4.3. keywords
	4.4. version
	4.5. publisher
	4.6. publisher-id
	4.7. name
	4.8. description
	4.9. bundle-html
	4.10. item-description-html
	4.11. bundle-pdf
	4.12. logic
	4.13. configuration-schema

	5. bundle-html
	6. Automation JavaScript file
	7. Configuration schema
	7.1. Attributes
	7.1.1. $schema
	7.1.2. $id
	7.1.3. ubisys::presentation::template::title
	7.1.4. ubisys::presentation::template::icon-pdf
	7.1.4.1. type

	7.1.5. properties
	7.1.6. Data type and supporting attributes
	7.1.6.1. type
	7.1.6.2. default
	7.1.6.3. minimum
	7.1.6.4. maximum
	7.1.6.5. minItems
	7.1.6.6. maxItems
	7.1.6.7. ubisys::type

	7.1.7. name
	7.1.8. description
	7.1.9. ubisys::short-description
	7.1.10. ubisys::presentation::order
	7.1.11. ubisys::presentation::placeholder
	7.1.12. ubisys::presentation::key
	7.1.13. ubisys::presentation::mandatory
	7.1.14. ubisys::presentation::visible
	7.1.15. ubisys::value::cross-reference
	7.1.16. ubisys::application-filter
	7.1.16.1. qualifying-device-types
	7.1.16.2. disqualifying-device-types
	7.1.16.3. qualifying-clusters
	7.1.16.4. include-groups

	7.1.17. uniqueItems
	7.1.18. ubisys::value::full-scale
	7.1.19. ubisys::value::stepping
	7.1.20. items
	7.1.21. ubisys::value::options

	7.2. Examples
	7.2.1. Properties examples using type
	7.2.1.1. String attribute
	7.2.1.2. Array attribute
	7.2.1.3. Integer attribute
	7.2.1.4. Number attribute
	7.2.1.5. Boolean attribute
	7.2.1.6. Object attribute

	7.2.2. Properties examples using ubisys::type
	7.2.2.1. zigbee-application-instance attribute
	7.2.2.2. time-of-day attribute
	7.2.2.3. color-temperature-k attribute
	7.2.2.4. percentage attribute
	7.2.2.5. cross-reference attribute
	7.2.2.6. lightlevel:lux attribute

	7.2.3. "Motion-based lighting control system" use case

	8. Adding support for other languages
	9. index.plist
	10. Parsed JSON file
	11. Troubleshooting_errors
	12. Integrated icons

	II: Javascript
	13. Features
	14. Fundamentals
	14.1. Naming conventions
	14.1.1. Class
	14.1.2. Interface
	14.1.3. Inheritance

	14.2. Firmware version references
	14.3. APIs/Interfaces
	14.4. Zigbee and Zigbee Cluster Library (ZCL) Basics

	15. Programming Interface
	15.1. Globals and Builtins
	15.2. Timer API
	15.2.1. Exported functions
	15.2.1.1. createTimer()
	15.2.1.2. createPeriodicTimer()
	15.2.1.3. createDayTimer()

	15.2.2. Interfaces and Classes
	15.2.2.1. Timer

	15.3. Zigbee API
	15.3.1. Exported functions
	15.3.1.1. onReady()
	15.3.1.2. onUpdate()
	15.3.1.3. getDevice ()
	15.3.1.4. getGroupByName()
	15.3.1.5. getGroupById()
	15.3.1.6. getGroupByAddress()
	15.3.1.7. getScene()
	15.3.1.8. getSceneById()
	15.3.1.9. getScenes()
	15.3.1.10. lookup()

	15.3.2. Interfaces and classes
	15.3.2.1. Device
	15.3.2.2. Application
	15.3.2.3. Group
	15.3.2.4. Scene
	15.3.2.5. Cluster
	15.3.2.6. OnOffCluster
	15.3.2.7. LevelControlCluster
	15.3.2.8. WindowCoveringCluster
	15.3.2.9. ClientCluster
	15.3.2.10. Attribute
	15.3.2.11. ZigbeeStatus

	15.3.3. Cached Attributes
	15.3.3.1. Power Configuration Cluster (0x0001)
	15.3.3.2. On/Off Cluster (0x0006)
	15.3.3.3. On/Off Switch Configuration (0x0007)
	15.3.3.4. Level Control Cluster (0x0008)
	15.3.3.5. OTA Upgrade (0x0019)
	15.3.3.6. Poll Control (0x0020)
	15.3.3.7. Door Lock (0x0101)
	15.3.3.8. Window Covering Cluster (0x0102)
	15.3.3.9. Thermostat (0x0201)
	15.3.3.10. Fan Control (0x0202)
	15.3.3.11. Color Control Cluster (0x0300)
	15.3.3.12. Ballast Configuration (0x0301)
	15.3.3.13. Illuminance Measurement (0x0400)
	15.3.3.14. Illuminance Level Sensing (0x0401)
	15.3.3.15. Temperature Measurement (0x402)
	15.3.3.16. Relative Humidity Measurement (x0405)
	15.3.3.17. Occupancy Sensing (0x0406)
	15.3.3.18. Leaf Wetness (0x0407)
	15.3.3.19. Soil Moisture (0x0408)
	15.3.3.20. IAS Zone Cluster (0x0500)
	15.3.3.21. IAS WD Cluster (0x0502)
	15.3.3.22. Metering (0x0702)
	15.3.3.23. Device Setup (0xfc00)
	15.3.3.24. Dimmer Setup (0xfc01)

	15.4. Buffer Support
	15.5. Push Notification API
	15.6. Global variables
	15.7. HTTP Client API
	15.7.1. Exported functions
	15.7.2. Classes
	15.7.2.1. HttpRequest
	15.7.2.2. FormData

	15.7.3. HttpResponse

	15.8. HTTP Server API
	15.8.1. Exported functions
	15.8.2. Classes
	15.8.2.1. HttpRequest

	16. Examples
	16.1. Toggle a light every 5s seconds
	16.2. Control a light via a motion detector
	16.3. Write the StartUpOnOff attribute in the On/Off cluster
	16.4. Control a light via an HTTP handler
	16.5. Send an HTTP request on button press

	17. Revision History
	18. Contact

