
 

 

CompactSHA – Secure Hash Standard 

SHA-256 C++ class library suitable for embedded systems 

 

 

Reference Manual 

Revision 1.1 

25th August 2009 

COPYRIGHT © 2005 - 2009 UBISYS TECHNOLOGIES GMBH 



 

 

CompactSHA   1 

Reference Manual, Version 1.1 

1 Introduction 

The Secure Hash Algorithms (SHA) are a collection of different cryptographic hash 
functions designed to generate a secure unique hash key for any dataset or 
message. The algorithms were designed by the National Security Agency (NSA) 
and published by the U. S. National Institute of Standards and Technology (NIST) 
as a U. S. Federal Information Processing Standard [1], [2]. 

SHA algorithms are used in many applications to verify data integrity, especially in 
applications requiring a cryptographically strong digest, i.e. one that cannot easily 
be duplicated. 

The SHA family of algorithms knows three different algorithms: SHA-0, SHA-1 and 
SHA-2, which differ in details of the algorithm and digest size.  

CompactSHA implements the SHA-256 algorithm, which is part of the SHA-2 
family. 

1.1 SHA-256 

SHA-256 uses a digest size of 256 bits. The algorithm calculates the hash value by 
segmenting the data into blocks of 512 bits and processes the data iteratively with 
six logical functions and 64 constants. The start hash value is represented by the 
first 32 bits of the decimal places of the square root of the first eight prime 
numbers (2 to 19). 

Every block needs 64 rounds of the SHA-2 family compression function. 

1.2 Security 

Different analysis has shown that attacks on the SHA-0 and SHA-1 algorithms are 
possible and thus, possibly defeating a cryptographic signature based on their 
usage. 

The U. S. National Institute of Standards and Technology (NIST) advices to use the 
SHA-2 algorithms for new applications. 

For SHA-2, an attack is not yet known. Currently, as of 2009, the SHA-2 algorithms 
are considered to be secure. 

  



 

 

CompactSHA   2 

Reference Manual, Version 1.1 

2 Implementation 

The CompactSHA implementation is optimized for 32 bit embedded systems, with 
little memory and computing power.  

The algorithm is encapsulated in the class CSecureHashAlgorithm256. 

Two modes of application are supported: a one-step hash operation on a given 
buffer and an interface consisting of three functions to allow hash calculations on 
incoming data streams, without the necessity to keep the whole data in one buffer. 

In both cases, the calculated hash value is available in the member variable 
m_abDigest. 

2.1 Usage example: single buffer 

For the one-step calculation, simply call the Calculate() function and pass the 
address and size of the buffer: 

CSecureHashAlgorithm256 sha; 

 

unsigned char abBuffer[1024]; 

 

// Implement: Fill buffer ... 

 

sha.Calculate(abBuffer, sizeof(abBuffer)); 

 

// Read the hash from the member m_abDigest 

 

2.2 Usage example: stream processing 

To calculate a hash value of an incoming stream, i.e. only small chunks of data are 
available at a given time, use the three-method interface, consisting of Start(), 
Update() and Finish(). 

CSecureHashAlgorithm256 sha; 

 
// Initialize 

Start(); 

 

while (...) 

{ 

// Implement: get buffer ... 

 Update(pBuffer, cbBuffer); 

} 

 

Finish() 

 

// Read the hash value from m_abDigest 

  



 

 

CompactSHA   3 

Reference Manual, Version 1.1 

3 Class Reference 

A single class, CSecureHashAlgorithm256 is defined. 

3.1 CSecureHashAlgorithm256 

3.1.1 Declaration 

class CSecureHashAlgorithm256; 

3.1.2 Attributes 

// Contains the calculated digest 

unsigned char m_abDigest[32]; 

3.1.3 Member functions 

// Initializes the SHA algorithm. Must be called once before calling 

// Update() 

void Start(); 

 

// Must be called after all data has been hashed. The m_abDigest  

// member is meaningful only afer a call to Finish() 

void Update(const unsigned char *pbInput, unsigned int nLength) 

 

// Finalize computation of the hash value. After calling this function, the 

// hash value should be read from the member array m_abDigest 

void Finish(); 

 

// one-step interface: 

// Performs the sequence of Start(), Update(pData, nLength) and Finish 

// in a single call. 

void Calculate(const void *pData, unsigned int nLength); 

 

  



 

 

CompactSHA   4 

Reference Manual, Version 1.1 

4 References 

[1] FIPS PUB 180-1: Federal Information Processing Standards Publication 
180-1: “SECURE HASH STANDARD”, 17th April 1995 

[2] FIPS PUB 180-2: Federal Information Processing Standards Publication 
180-2: “SECURE HASH STANDARD”, 1st August 2002 

 

5 Revision History 

Revision Date Changes 

1.0 15th June 2005 Initial Version 
1.1 25th August 2009 Add notes on security status of SHA-0 and 

SHA-1. 

 

  



 

 

CompactSHA   5 

Reference Manual, Version 1.1 

6 License 

CompactSHA (“the software”) remains the sole property of ubisys technologies 
GmbH, Düsseldorf, Germany (“ubisys”). A limited license is granted to the licensee 
including the right to distribute the software in binary form as part of licensee’s 
products. The source code must not be disclosed to third parties. 

The software is provided "as is", without warranty of any kind, express or implied, 
including but not limited to the warranties of merchantability, fitness for a particular 
purpose and non-infringement. 

In no event shall ubisys be liable for any claim, damage or other liability, whether in 
an action of contract, tort or otherwise, arising from, out of or in connection with the 
software or the use or other dealings in the software. 

7 Contact 

UBISYS TECHNOLOGIES GMBH 

HARDWARE AND SOFTWARE DESIGN 

ENGINEERING AND CONSULTING 

AM WEHRHAHN 45 
40211 DÜSSELDORF 
GERMANY 
T: +49. 211. 54 21 55 00 
F: +49. 211. 54 21 55 99 
www.ubisys.de 
info@ubisys.de 

 


