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1 Introduction 

Elliptic curve cryptography is a public-key cryptographic system based on the 
algebraic structure of elliptic curves over finite fields. Public-key cryptography is 
based on the complexity of certain mathematical problems, making them unsolvable 
in practice. 

1.1 Elliptic curves 

An elliptic curve is a plane curve, consisting of points satisfying the equation  

�� = �� + �� + �, including the point ∞. 

Koblitz curves are a special case. These are binary anomalous curves with 
coefficients �, � ∈ �0, 1�. This allows for certain optimizations. 

1.2 Elliptic curve cryptography 

The following cryptographic algorithms are using elliptic curves: 

- Elliptic Curve Diffie-Hellman (ECDH), a key agreement scheme based on 
the Diffie-Hellman scheme 

- Elliptic Curve MQV, a key agreement scheme based on MQV 
- Elliptic Curve Digital Signature Algorithm (ECDSA) 

Currently, CompactECC implements the ECDSA and ECDH algorithms. 

1.3 Elliptic curve domain parameters 

The parameters fully describing an elliptic curve are called the domain parameters 
and they must be agreed upon by all participants in an elliptic curve cryptographic 
system. 

a, b Coefficients specifying the elliptic curve �� = �� + �� + � 
p Modulus defining the finite field 
G Base point on the curve 
n Order of G 

1.4 Security 

Elliptic curve cryptographic systems are based on point multiplication on elliptic 
curves over finite fields. Their security is based on the assumption that the Elliptic 
Curve Discrete Logarithm Problem (ECDLP) is practically unsolvable for complex 
curves. While it is easy to calculate � = ��, it is intractable to calculate the inverse, 
i.e. find d for a known R and Q [5].   
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1.5 Elliptic Curve Digital Signature Algorithm (ECDSA) 

1.5.1 Advantages 

Compared to the ordinary, RSA-based Digital Signature Algorithm (DSA), the main 
advantage of the ECDSA algorithm is the smaller key size at a comparable security 
level. Thus, less storage space is required for the keys and signatures as well as a 
smaller amount of RAM and computational power. 

1.5.2 Key generation 

The private key � is generated by randomly selecting an integer in the range 
[1, � − 1]. The public key � is derived from the private key through multiplication on 
the curve: � = ��. 

1.5.3 Signature generation 

�� is the bit length of the group order �, i.e. the bit length of the signature 
components as well as the bit length of the private key. 

1. Calculate the hash over the message to be signed by using a cryptographic 
hash function. Set � to the �� leftmost bits of the hash. 

2. Select a random integer � in the range [1, � − 1]. 
3. Calculate  �1, �1! = �� and set " = �1	 $%�	�!. 
4. If	" = 0, go back to step 2. 
5. Calculate & = �'( � + "�!	 $%�	�!. 
6. If & = 0, go back to step 2. 
7. The signature consists of the pair  ", &!. 

Note that the comparisons in step 4 and 6 are inherent to the algorithm and cannot 
be avoided. Depending on the randomly generated value k, it might be necessary to 
re-calculate a part of the signature or even the whole signature in very rare cases. 

1.5.4 Signature verification 

1. Verify that r and s are in the range [1, � − 1]. 
2. Calculate the hash over the message by using the same hash function used 

in the signature generation. Set � to the �� leftmost bits of the hash. 
3. Calculate * = &'(	 $%�	�!. 
4. Calculate +( = �*	 $%�	�!. 
5. Calculate +� = "*	 $%�	�!. 
6. Calculate  �(, �(! = +(� + +��. 
7. Verify " = �1	 $%�	�!. 
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2 Implementation overview 

2.1 Namespace 

All CompactECC types and functions are defined in the ‘cecc’ namespace. 

2.2 Handling of big unsigned integer numbers 

Asymmetric cryptographic algorithms such as ECC are based on big integer 
numbers. ECC, compared to RSA, uses relatively small numbers, but still consisting 
of several hundred bits. Common processors cannot handle them natively and thus 
they are not available to most programming languages, such as C/C++. Thus, a 
dedicated implementation is provided, which implements standard arithmetic 
functions and reduces them to several invocations of the available operations on 
ordinary integers. The mentioned functions are implemented in the C++ class 
template CBigUnsigned. Two parameters are available to parameterise the class 
template to adapt it to the used architecture. 

2.3 Point representation 

Points on the elliptic curve are stored in two-dimensional Cartesian coordinates. 
The class CPoint represents a simple container, using two CBigUnsigned 
members, representing the x and y coordinates. The point class is defined as a 
class template with two parameters, specifying the types to use for the 
CBigUnsigned class. 

2.4 Finite fields 

Elliptic curves operate on so-called finite fields. Finite field operations are 
implemented in the class CFiniteField. A specialized and optimized version for 
Koblitz curves operating on binary finite fields is implemented in the derived class 
CFiniteFieldBinary.  

Further optimizations are possible for prime fields, by replacing the generic modulo-
operation with an optimized implementation by exploiting features of the so-called 
generalized Mersenne numbers. For now, this optimization is only implemented for 
the secp192r1 curve. The corresponding finite field class is called 
CFiniteField192r1. 

The finite field classes are defined as class templates with two parameters, 
specifying the types to use for the CBigUnsigned class. The finite field classes are 
used internally and do not require any user-interaction or parameterisation. 

2.5 Elliptic curves 

A generic elliptic curve representation is implemented in the class CEllipticCurve. 
For Koblitz curves, the class CKoblitzCurve provides an optimized implementation, 
exploiting certain features inherent to Koblitz curves. 

Both classes are defined as class templates with three parameters. The first two 
parameters specify the types to use for the CBigUnsigned class. The third 
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parameter specifies the finite field to use, defaulting either to the generic 
CFiniteField or the optimized CFiniteFieldBinary for Koblitz curves. 

Point multiplication on elliptic curves is optimized by using a sliding-window 
approach. This involves pre-computation of a set of base points (16 by default) 
during curve initialization, allowing processing several bits in a single step (4 bits 
for 16 base points). 

The recommended curves defined in the “Standards for Efficient Cryptography 
(SEC)” [3] are predefined with their parameters. Hence, it is usually not required to 
deal with the CEllipticCurve class itself, but using the derived class definitions 
instead. 

2.6 Elliptic Curve Digital Signature Algorithm (DSA) 

The Elliptic Curve Digital Signature Algorithm is implemented in the classes 
CEllipticCurveDSASignOnly and CEllipticCurveDSA, which provide functions for 
creating and verifying signatures.  

Both classes are defined as class templates with three parameters. The first two 
parameters define the types to parameterise CBigUnsigned. The third parameter 
defines the type of finite field used by the elliptic curve.  

The “Sign” function to create signatures receives another template parameter, 
namely the type of the random number generator to use to generate the random 
number � during creating of the signature. 

2.7 Generation of Random Numbers 

The security of the Elliptic Curve Digital Signature Algorithm depends on the 
availability of proper random numbers. The random number generator available in 
the C/C++ runtime library is usually based on a simple linear feedback shift register 
(LFSR) and does not meet the requirements. This is especially a problem on 
embedded systems, as there is usually no stochastic entropy available to seed 
such a random number generator. 

Thus, an interface to a user-specified random number generator is provided in the 
class CEllipticCurveDSA. Refer to section  6.10 for details. 

A reference implementation is available using the Microsoft Windows 
Cryptographic API on a Windows Computer. A testing-only implementation is 
provided as well, which uses the unsafe random number generator of the C/C++ 
standard library. 

An implementation on an embedded system should provide a way to sample some 
true random data, possibly from some attached peripherals (e.g. noise, network 
traffic, user interaction etc.). 
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3 Predefined curves 

CompactECC includes the following predefined curves, recommended in 
“Standards for Efficient Cryptography (SEC), SEC2: Recommended Elliptic Curve 
Domain Parameters“ [3]. 

Elliptic Curve Elliptic Curve Class Finite Field class  

secp160k1 CEllipticCurve160k1 CBinaryField 
secp160r1 CEllipticCurve160r1 CFiniteField 
secp192k1 CEllipticCurve192k1 CBinaryField 
secp192r1 CEllipticCurve192r1 CFiniteField192r1 
secp224k1 CEllipticCurve224k1 CBinaryField 
secp224r1 CEllipticCurve224r1 CFiniteField 
secp256k1 CEllipticCurve256k1 CBinaryField 
secp256r1 CEllipticCurve256r1 CFiniteField 
secp384r1 CEllipticCurve384r1 CFiniteField 
secp521r1 CEllipticCurve521r1 CFiniteField 

 

Note that the same curve might have different names in different standards than 
those used in the SEC. For example, the ANSI X9.62 prime192v1 curve is 
equivalent to the secp192r1 curve. 

If the stack-based implementation of CBigUnsigned is used, properly adapt the 
value of the enum CBigUnsigned::capacity for the curve with the greatest bit-length 
used in the particular application. Refer to section  6.1.2 for details. 
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4 Usage 

A short usage example for creating and verifying signatures is provided based on 
the secp192r1 curve. 

4.1 Signature generation 

- Instantiate the curve and a random number generator 

// Instantiate the curve 

CEllipticCurve192r1<unsigned int, unsigned long long> curve; 

 

// Instantiate a random number generator (c.f. section  2.7 and  6.10) 

CRandomNumberGenerator rng; 

 

- Define the private key (pre-generated) 

Usually, the private key is stored somewhere in flash and a CBigUnsigned 
instance must be created: 

// Create the private key from the unsigned int array init_d[] 

// Digits (of unsigned int type) must be stored with the  

// least-significant digit first 

 

const unsigned int anPrivateKey[] = {  

    0x628f6ca5, 

    0x1e3a45db, 

    0xf4b12d89, 

    0x594470af, 

    0x70791d12, 

    0xdeb8634e 

}; 

 

CBigUnsigned<T, T2> privateKey(anPrivateKey, curve.m_nKeyDigits); 

 

- Generate the private key on-the-fly (testing only) 

Alternatively, for testing, the private key may be generated on the fly, by 
creating a random number and verifying that it meets the requirements (i.e. it 
must be in the range [1, � − 1]) 

CBigUnsigned<T, T2> privateKey(curve.m_nKeyDigits); 

 

do  

{ 

    rng(privateKey); 

    // ensure that privateKey is < m_p 

    privateKey = privateKey % curve.m_field.m_p; 

} while (privateKey == 0); 

 

- Derive the public key from the private key (if required) 

The public key can be derived from the private key by multiplication on the 
curve: 

CPoint<unsigned int, unsigned long long> publicKey; 

 

// Either use curve.Multiply() or curve.WindowMultiply(). 

// The latter uses a sliding window approach and pre-computed points. 
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curve.WindowMultiply(publicKey, privateKey); 

- Calculate the hash of the message 

The following fragment is only provided as an example for a message stored 
in the array abMessage. The user should calculate a cryptographic digest, 
e.g. SHA-1 or SHA-256. Note the SHA-1 is considered insecure nowadays. 

CBigUnsigned<unsigned int, unsigned long long> digest; 

 

// Calculate the digest – to be be implemented by the user 

CalculateDigest(abMessage, sizeof(abMessage), digest, 

                curve.m_nDigits); 

 

- Instantiate the ECDSA class (or the ECDSA sign-only class) 

// ECDSA class: sign and verify (requires the public key) 

CEllipticCurveDSA<unsigned int, unsigned long long, 

CFiniteField192r1<unsigned int, unsigned long long> > 

    ecdsa(curve, publicKey); 

 

// ECDSA sign-only class (public key not required) 

CEllipticCurveDSASignOnly<unsigned int, unsigned long long, 

    CFiniteField192r1<unsigned int, unsigned long long> > ecdsa(curve); 

 

- Sign the hash of the message 

CBigUnsigned<unsigned int, unsigned long long> r, s; 

 

// Pass r, s to receive the signature 

// the private key d, the message digest and the random number 

// generator to generate k 

ecdsa.Sign(r, s, d, digest, rng); 

 

- (r, s) contain the signature of the message 

 

4.2 Signature verification 

- Instantiate the curve 

CEllipticCurve192r1<unsigned int, unsigned long long> curve; 

- Define the public key 

The private key is not known to the party which verifies the signature (except 
in test cases). Thus, the public key must be stored somewhere in memory. 

const unsigned int anPublicKeyX[] = {  

    0xe980fe4e, 

    0xc642ac56, 

    0xc4934fe9, 

    0xab16793a, 

    0x9c7ecc10, 

    0x64400ec8 

}; 
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const unsigned int anPublicKeyY[] = {  

    0x725f30f5, 

    0x9587914a, 

    0x73b7e74a, 

    0x2a1d415d, 

    0xc8debdcf, 

    0xcbb2c125 

}; 

 

 

// Create the public key Q (point on the curve) from the init data: 

CPoint<unsigned int, unsigned long long> 

    publicKey(anPublicKeyX, anPublicKeyY, curve.m_nKeyDigits); 

 

- Instantiate the ECDSA class 

CEllipticCurveDSA<unsigned int, unsigned long long, 

    CFiniteField192r1<unsigned int, unsigned long long> >  

    ecdsa(curve, publicKey); 

- Calculate the hash of the message 

Use the same hash function as used by the signing party. 

CBigUnsigned<unsigned int, unsigned long long> digest; 

 

// Calculate the digest – to be be implemented by the user 

CalculateDigest(abMessage, sizeof(abMessage), digest, 

                curve.m_nDigits); 

 

- Verify the signature 

bool bPass = ecdsa.Verify(r, s, digest); 

 

 

4.3 Notes on class instantiation 

The instantiation of the CEllipticCurve and CEllipticCurveDSA classes might take a 
fair amount of time. This is due to the computation of base points for faster 
multiplication which are based on the point �	(a curve parameter) for the 
CEllipticCurve class and based on the public key � for the CEllipticCurveDSA 
class. 

Note that the instantiation of the CEllipticCurve and classes is only necessary to be 
done once, not every time a signature needs to be created or verified. 
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5 Performance 

5.1 ARM7TDMI / AT91SAM7S 

The following values for memory consumption and runtime were measured at a 
clock speed of 48 MHz by using the Thumb instruction set and setting the compiler 
optimizations to “High: Speed”. All variables were instantiated on the stack. 
Memory consumption includes a small test program as well as required parts of the 
C/C++ runtime library. 

5.1.1 Code size and RAM requirements 

 Sign only Sign and Verify 
Curve Code Stack Code Stack 

secp160k1 20 kB 5.4 kB 22 kB 7.5 kB 
secp160r1 19 kB 5.4 kB 21 kB 7.5 kB 
secp192k1 21 kB 6 kB 22 kB 8.4 kB 
secp192r1 20 kB 6 kB 22 kB 8.4 kB 
secp224k1 21 kB 6.5 kB 22 kB 9.1 kB 
secp224r1 20 kB 6.6 kB 22 kB 9.1 kB 
secp256k1 21 kB 7.2 kB 22 kB 10 kB 
secp256r1 21 kB 7.2 kB 22 kB 10 kB 
secp384r1 19 kB 9.3 kB 20 kB 12.8 kB 
secp521r1 20 kB 12.5 kB 21 kB 17.5 kB 

Table 1 Code and RAM requirements for different curves on the ARM7 microprocessor 

5.1.2 Runtimes 

Curve Sign Verify 
secp160k1 430 ms 865 ms 
secp160r1 480 ms 960 ms 
secp192k1 680 ms 1.38 s 
secp192r1 410 ms 825 ms 
secp224k1 980 ms 1.98 s 
secp224r1 1.1 s 2.2 s 
secp256k1 1.3 s 2.7 s 
secp256r1 1.8 s 3.6 s 
secp384r1 4.4 s 8.8 s 
secp521r1 10 s 20 s 

Table 2 Runtimes for signature creation and verification on an ARM7 microprocessor at 48 MHz 

 

Remarks: 

The secp192r1 curve uses a fast-reduction algorithm for the modulo-p operation. 

An optimized implementation for signature creation on the secp192r1 curve on 
ARM7TDMI microprocessors is available. 
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5.2 ARM Cortex-M3 / ATSAM3S 

CompactECC is also available for Cortex-M3 controllers and has been successfully 
tested on Atmel’s ATSAM3S device running at 64MHz. In general, performance is 
superior to that of the SAM7S. 

5.2.1 Code size and RAM requirements 

TBD 

5.2.2 Runtimes 

TBD 
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6  Class Reference 

6.1 CBigUnsigned 

6.1.1 Declaration 

The class CBigUnsigned is defined as a generic class template, parameterised by 
two type paremeters: 

template<class T, class T2> 

class CBigUnsigned; 

The type parameter T specifies the internal storage type for each digit. T2 defines 
the result type of a multiplication of two variables of type T. 

Most 32-bit compilers use unsigned int (32 bits) as their native type and provide 
an unsigned long long type of 64 bits1. 

In this case, the parameterised type to use would be CBigUnsigned<unsigned int, 
unsigned long long>. 

6.1.2 Implementations 

Currently, two distinct implementations are available: the default implementation 
allocates storage on the heap as required and allows to dynamically adjust the 
required capacity. 

The alternative implementation provides a fixed amount of storage space inside the 
class instance, i.e. usually on the stack. Definition of the preprocessor symbol 
__COMPACT_CRYPTO_STACK__ enables the alternative implementation. The amount of 
reserved space is defined by the value of the enum CBigUnsigned::capacity. The 
value is predefined to the mentioned preprocessor symbol, i.e. the defined value of 
the pre-processor symbol selects the amount of reserved space. Refer to table 
Table 3 for the required capacity for the different curve types on a 32 bit platform. 

The heap-based implementation is usually slower than the stack-based 
implementation, as it requires memory allocation and deallocation. 

Curves Key size Required capacity 

8 bit 16 bit 32 bit 

secp160k1, secp160r1 160 40 24 14 
secp192k1, secp192r1 192 52 28 16 
secp224k1, secp224r1 224 60 32 18 
secp256k1, secp256r1 256 68 36 20 
secp384r1 384 100 52 28 
secp521r1 521 136 70 38 

Table 3 Required storage capacity for the stack-based implementation on different platforms 

 

                                              

1 Although the type unsigned long long was only standardized in C99 and not yet in C++, it is available as a 
language extension in most compilers and will be included in the upcoming C++ standard (informally known as 
C++0x).  
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6.1.3 Constructors 

// Construct from array of digits (which may be stored in ROM) 

CBigUnsigned(const T *pData, const unsigned int nDigits); 

 

// Copy constructor 

CBigUnsigned(const CBigUnsigned &storage); 

 

// This special copy-like constructor does not increment the  

// reference counter. It returns a copy of the same object,  

// probably with different (i.e. non-zero) offset 

explicit CBigUnsigned(const CBigUnsigned &storage,  

    const unsigned int nOffset); 

 

// Construct instance with a given number of digits 

// Does NOT clear the contents. Use Clear() for this purpose. 

explicit CBigUnsigned(const unsigned int nCount = 0, 

    const bool bAllocate = true); 

 

// Constructor-like static function: creates an instance from an encoded 

// byte stream, stored with the most-significant byte first  

// (mainly for testing) 

static CBigUnsigned FromByteArray(const unsigned char *pData,  

                                  const unsigned int cbData); 

 

6.1.4 Operators 

6.1.4.1 Assignment operators 

// Assign value of another CBigUnsigned instance 

CBigUnsigned &operator=(const CBigUnsigned &); 

 

// Assign a single digit of type T (all other digits are cleared) 

CBigUnsigned &operator=(const T); 

6.1.4.2 Comparison operators 

// Compare with a single digit of type T 

bool operator==(const T digit) const; 

bool operator!=(const T digit) const; 

 

// Compare with another CBigUnsigned 

bool operator==(const CBigUnsigned &a) const; 

bool operator!=(const CBigUnsigned &a) const; 

bool operator>=(const CBigUnsigned &a) const; 

bool operator<=(const CBigUnsigned &a) const; 

bool operator>(const CBigUnsigned &a) const; 

bool operator<(const CBigUnsigned &a) const; 

6.1.4.3 Arithmetic operators 

CBigUnsigned operator+(const CBigUnsigned &a) const; 

CBigUnsigned operator+(const T a) const; 

 

CBigUnsigned operator-(const CBigUnsigned &a) const; 

 

CBigUnsigned operator*(const CBigUnsigned &a) const; 

CBigUnsigned operator*(const T a) const; 

 

CBigUnsigned operator/(const CBigUnsigned &a) const; 

CBigUnsigned operator%(const CBigUnsigned &a) const; 

 

CBigUnsigned operator<<(const unsigned int nValue) const; 

CBigUnsigned operator>>(const unsigned int nValue) const; 
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6.1.4.4 Non-standard arithmetic 

// Computes a = b * 2^c and returns carry 

static T ShiftLeftEx(CBigUnsigned &a, const CBigUnsigned &b, const T c); 

 

// Computes a = b / 2^c and returns carry 

static T ShiftRightEx(CBigUnsigned &a, const CBigUnsigned &b, const T c); 

 

// Calculates a = b + c and returns carry 

static T AddEx(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &c); 

 

// Calculates a = b - c and returns borrow 

static T SubtractEx(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &c); 

 

// Calculates a = b + c * d (where c is a digit) and returns carry 

static T AddMultiplyEx(CBigUnsigned &a, const CBigUnsigned &b,  

    const T c, const CBigUnsigned &d); 

 

// Calculates a = b - c * d (where c is a digit) and returns borrow 

static T SubtractMultiplyEx(CBigUnsigned &a, const CBigUnsigned &b,  

    const T c, const CBigUnsigned &d); 

 

// Calculates a = c div d and b = c mod d 

static void DivideEx(CBigUnsigned &a, CBigUnsigned &b,  

    const CBigUnsigned &c, const CBigUnsigned &d); 

 

// Calculates a = gcd(b, c) 

static void CalculateGCD(CBigUnsigned &a, const CBigUnsigned &b, 

    const CBigUnsigned &c); 

 

// Calculates a = b^c mod d; 

static void PowerModulo(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &c, const CBigUnsigned &d); 

 

// Calculates a = 1/b mod c; 

static void InverseModulo(CBigUnsigned &a, const CBigUnsigned &b, 

    const CBigUnsigned &c); 

 

// Calculates a = (b + c) mod d 

static void AddModulo(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &c, const CBigUnsigned &d); 

 

// Calculates a = (b - c) mod d 

static void SubtractModulo(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &c, const CBigUnsigned &d); 

 

// Calculates a = b * c mod d, where d is generalized Mersenne prime, 

// d = 2^key_bits - omega 

static void MultiplyModuloOptimized(CBigUnsigned &a, 

    const CBigUnsigned &b, const CBigUnsigned &c,  

    const CBigUnsigned &d, const CBigUnsigned &omega); 

 

// Calculates a = b^2 according to the Standard Squaring Algorithm in  

// "High-Speed RSA Implementation" 

static void Square(CBigUnsigned &a, const CBigUnsigned &b); 

 

// Calculates a = b^2 mod d according to the Standard Squaring  

// Algorithm in "High-Speed RSA Implementation" 

static void SquareModulo(CBigUnsigned &a, const CBigUnsigned &b,  

    const CBigUnsigned &d); 

 

// Calculates a = b^2 mod d according to the Standard Squaring  

// Algorithm in "High-Speed RSA Implementation". Optimized variant, 

// where d is generalized Mersenne prime 

static void SquareModuloOptimized(CBigUnsigned &a, const CBigUnsigned &b, 

 const CBigUnsigned &d, const CBigUnsigned &omega); 
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6.2 CPoint 

6.2.1 Declaration 

template<class T, class T2> 

class CPoint; 

6.2.2 Constructors 

CPoint(); 

 

// Create a CPoint with nDigits, initialize X and Y coordinates 

// from the given init values (nDigits each) 

CPoint(const T *const pnX, const T *const pnY,  

    const unsigned int nDigits); 

 

// Assignment constructor 

CPoint(const CPoint &point); 

 

6.2.3 Attributes 

// X and Y coordinates 

CBigUnsigned<T, T2> m_x; 

CBigUnsigned<T, T2> m_y; 

 

6.2.4 Operations 

// Clear X and Y coordinate, i.e. set to zero 

void Clear(); 

 

// Compare point to (0, 0) 

bool IsZero() const; 

 

// Compare point with another point 

bool operator==(const CPoint &point) const; 
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6.3 CFiniteField 

6.3.1 Declaration 

template<class T, class T2> 

class CFiniteField; 

6.3.2 Constructors 

// Construct the finite field 

// The initializer of the prime modulus p and the number of digits  

// must be given 

CFiniteField(const T *pnP, const unsigned int nDigits); 

 

6.3.3 Attributes 

// the prime modulus p 

const CBigUnsigned<T, T2> m_p; 

6.3.4 Operations 

// Calculates a = b * c mod m_p 

void Multiply(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b, 

    const CBigUnsigned<T, T2> &c) const; 

 

// Calculates a = b^2 mod m_p 

void Square(CBigUnsigned<T, T2> &a,  

    const CBigUnsigned<T, T2> &b) const; 

 

// Calculates a = (b - c) mod m_p 

void Subtract(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b,  

 const CBigUnsigned<T, T2> &c) const; 

 

// Calculates a = (b + c) mod m_p 

void Add(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b,  

 const CBigUnsigned<T, T2> &c) const; 

 

// Calculates a = 1/b mod m_p; 

void Inverse(CBigUnsigned<T, T2> &a,  

 const CBigUnsigned<T, T2> &b) const; 
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6.4 CFiniteFieldBinary 

6.4.1 Declaration 

template<class T, class T2> 

class CFiniteFieldBinary : public CFiniteField<T, T2>; 

6.4.2 Constructors 

// Construct binary field. 

// Initialize p and Omega with the specified initializers  

// and number of digits 

CFiniteFieldBinary(const T *pnP, const T *pnOmega,  

                   const unsigned int nDigits); 

6.4.3 Attributes 

// Omega, p = 2^m - omega 

const CBigUnsigned<T, T2> m_omega; 

6.4.4 Overloaded method 

// Calculates a = b * c mod m_p 

void Multiply(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b, 

              const CBigUnsigned<T, T2> &c) const; 

 

// Calculates a = b^2 mod m_p 

void Square(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b) const; 
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6.5 CFiniteField192r1 

6.5.1 Declaration 

template<class T, class T2> 

class CFiniteField192r1 : public CFiniteField<T, T2>; 

6.5.2 Constructors 

// Construct the finite field with the given initialize and number  

// of digits for the prime modulus p 

CFiniteField192r1(const T *pnP, const unsigned int nDigits); 

6.5.3 Overloaded methods 

// Calculates a = b * c mod m_p using an optimized modulo implementation 

void Multiply(CBigUnsigned<T, T2> &a, const CBigUnsigned<T, T2> &b, 

              const CBigUnsigned<T, T2> &c) const; 

 

// Calculates a = b^2 mod m_p using an optimized modulo implementation 

void Square(CBigUnsigned<T, T2> &a,  

            const CBigUnsigned<T, T2> &b) const; 
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6.6 CEllipticCurve 

6.6.1 Declaration 

template<class T, class T2, class F = CFiniteField<T, T2> > 

class CEllipticCurve; 

6.6.2 Constructors 

// Assumption p, a, b, gx, gy have key_bits / digit_bits digits, r  

// has got one more digit 

CEllipticCurve(const unsigned int nKeyBits, const F &field,  

 const T *pnA, const T *pnB, const T *pnGx, const T *pnGy, const T *pnR); 

6.6.3 Attributes 

// Number of key digits 

const unsigned int m_nKeyDigits; 

 

// Finite field (prime, Koblitz) 

const F &m_field; 

 

// curve's coefficients, a 

const CBigUnsigned<T, T2> m_a; 

 

// curve's coefficients, b 

const CBigUnsigned<T, T2> m_b; 

 

// base point, a point on e of order r 

const CPoint<T, T2> m_g; 

 

// a positive, prime integer dividing the number of points on e 

const CBigUnsigned<T, T2> m_r; 

6.6.4 Operations 

// P0 = P1 + P2 

void Add(CPoint<T, T2> &p0, const CPoint<T, T2> &p1,  

 const CPoint<T, T2> &p2) const; 

 

// (P0,Z0) = (P1,Z1) + (P2,Z2) in Jacobian projective coordinate space 

void AddProjective(CPoint<T, T2> &p0, CBigUnsigned<T, T2> &z0,  

 const CPoint<T, T2> &p1, const CBigUnsigned<T, T2> &z1,  

 const CPoint<T, T2> &p2, const CBigUnsigned<T, T2> &z2) const; 

 

// (P0,Z0) = 2*(P1,Z1) 

void DoubleProjective(CPoint<T, T2> &p0,  

 CBigUnsigned<T, T2> &z0, const CPoint<T, T2> &p1,  

 const CBigUnsigned<T, T2> &z1) const; 

 

// P0 = n * P1 (scalar point multiplication) 

void Multiply(CPoint<T, T2> &p0, const CPoint<T, T2> &p1,  

 const CBigUnsigned<T, T2> &n) const; 

 

// Precompute array of base points for sliding window 

void Precompute(const CPoint<T, T2> &p,  

 CPoint<T, T2> *pBasePoints); 

 

// P0 = n * basepoint  

// (scalar point multiplication, optimized sliding window algorithm) 

void WindowMultiply(CPoint<T, T2> &p0,  

 const CBigUnsigned<T, T2> &n) const; 

 

// P0 = n * basepoint 

// (scalar point multiplication, optimized sliding window algorithm) 

void WindowMultiply(CPoint<T, T2> &p0, const CBigUnsigned<T, T2> &n,  

 const CPoint<T, T2> *pBasePoints) const; 
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6.7 CKoblitzCurve 

Defines a Koblitz curve, operating on a binary finite field (class CFiniteFieldBinary). 
Distinguished behaviour different from the CEllipticCurve behaviour is implemented 
in the class CFiniteFieldBinary, except for the constructor. 

6.7.1 Declaration 

template<class T, class T2, class F = CFiniteFieldBinary<T, T2> > 

class CKoblitzCurve : public CEllipticCurve<T, T2, F>; 

6.7.2 Constructors 

// Assumption p, omega, a, b, gx, gy have key_bits / digit_bits digits,  

// r  has got one more digit 

CKoblitzCurve(const unsigned int nKeyBits, const F &field, 

              const unsigned int *pnA, const unsigned int *pnB,  

              const unsigned int *pnGx, const unsigned int *pnGy,  

              const unsigned int *pnR);  
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6.8 CEllipticCurveDSASignOnly 

6.8.1 Declaration 

template<class T, class T2, class F > 

class CEllipticCurveDSASignOnly; 

6.8.2 Constructor 

CEllipticCurveDSASignOnly (CEllipticCurve<T, T2, F> &ec); 

6.8.3 Attributes 

CEllipticCurve<T, T2, F> &m_ec; 

6.8.4 Operations 

// Sign the message. (r, s) is the ECC signature, d is the  

// private key, digest is an appropriate hash value (MD5, SHA), and 

// GenerateRandom is a function object of class type R providing a 

// cryptographically strong random number. 

 

template<class R> 

void Sign(CBigUnsigned<T, T2> &r, CBigUnsigned<T, T2> &s,  

    const CBigUnsigned<T, T2> &d,  

    const CBigUnsigned<T, T2> &digest, 

    R &GenerateRandom) const; 

 

6.9 CEllipticCurveDSA 

6.9.1 Declaration 

template<class T, class T2, class F> 

class CEllipticCurveDSA : public CEllipticCurveDSASignOnly; 

6.9.2 Constructor 

CEllipticCurveDSA(CEllipticCurve<T, T2, F> &ec, 

    const CPoint<T, T2> &key); 

6.9.3 Attributes 

CPoint<T, T2> m_base[CEllipticCurve<T, T2>::points]; 

6.9.4 Operations 

// Verify the message. (r, s) is the ECC signature, digest is an  

// appropriate hash value, calculated with the same algorithm that  

// the signer used. The stored public key is used for verification 

bool Verify(const CBigUnsigned<T, T2> &r,  

    const CBigUnsigned<T, T2> &s,  

    const CBigUnsigned<T, T2> &digest) const; 
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6.10 Random number generator 

The random number generator provided to the Sign() method of the 
CEllipticCurveDSA and CEllipticCurveDSASignOnly classes must be a so-called 
“function object” or “functor”, i.e. it must be  of class type and provide the “function 
call operator” operator() to generate a random number: 

template<class T, class T2> 

class CRandomNumberGenerator 

{ 

    // Operations 

    public: 

        void operator()(CBigUnsigned<T, T2> &random); 

}; 

In a specific project, parameters T and T2 to CBigUnsigned are determined, thus a 
simpler non-template definition can be used as well: 

class CRandomNumberGenerator 

{ 

    // Operations 

    public: 

        void operator() 

            (CBigUnsigned<unsigned int, unsigned long long> &random); 

}; 

 

7 Evaluation 

Evaluation releases for Atmel’s SAM3S-EK, SAM7S-EK, and SAM7X-EK evaluation 
boards are available upon request. These images can be flashed on the boards 
with SAM-BA. The debug unit can be connected to a standard terminal application 
via serial port (115200, 8, N, 1, no handshake) to observe the output. There is also 
an output pin available for timing measurements on a scope or logic analyzer, for 
example. Other platforms supported upon request. Please contact ubisys support 
(support@ubisys.de) if you are interested in evaluating any of the cryptographic 
libraries. 
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9 Revision History 

Revision Date Changes 

1.0 26th October 2005 Initial Version 
1.1 10th July 2007 Separation of signing and verifying, improved 

random number generator interface 
1.2 28th August 2009 Finite field abstraction and optimization for 

the secp192r1 curve. Separate namespace 
‘cecc’ defined. Performance data included.  

1.3 15th September 2009 Introduce a static, constructor-like function 
FromByteArray() in CBigUnsigned. Include 
required CBigUnsigned capacity for 8- and 
16-bit systems. 

1.4 18th July 2010 Updated for Cortex-M3/ATSAM3S 
Notice on availability of ECDH 

 

10 License 

CompactECC (“the software”) remains the sole property of ubisys technologies 
GmbH, Düsseldorf, Germany (“ubisys”). A limited license is granted to the licensee 
including the right to distribute the software in binary form as part of licensee’s 
products. The source code must not be disclosed to third parties. 

The software is provided "as is", without warranty of any kind, express or implied, 
including but not limited to the warranties of merchantability, fitness for a particular 
purpose and non-infringement. 

In no event shall ubisys be liable for any claim, damage or other liability, whether in 
an action of contract, tort or otherwise, arising from, out of or in connection with the 
software or the use or other dealings in the software. 

11 Contact 

UBISYS TECHNOLOGIES GMBH 

HARDWARE AND SOFTWARE DESIGN 

ENGINEERING AND CONSULTING 

AM WEHRHAHN 45 
40211 DÜSSELDORF 
GERMANY 
T: +49. 211. 54 21 55 00 
F: +49. 211. 54 21 55 99 
www.ubisys.de 
info@ubisys.de 

 


